4 resultados para distribution and transfer
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Faxaflói bay is a short, wide and shallow bay situated in the southwest of Iceland. Although hosting a rather high level of marine traffic, this area is inhabited by many different species of cetaceans, among which the white-beaked dolphin (Lagenorhynchus albirostris), found here all year-round. This study aimed to evaluate the potential effect of increasing marine traffic on white-beaked dolphins distribution and behaviour, and to determine whether or not a variation in sighting frequencies have occurred throughout years (2008 – 2014). Data on sightings and on behaviour, as well as photographic one, has been collected daily taking advantage of the whale-watching company “Elding” operating in the bay. Results have confirmed the importance of this area for white-beaked dolphins, which have shown a certain level of site fidelity. Despite the high level of marine traffic, this dolphin appears to tolerate the presence of boats: no differences in encounter durations and locations over the study years have occurred, even though with increasing number of vessels, an increase in avoidance strategies has been displayed. Furthermore, seasonal differences in probabilities of sightings, with respect to the time of the day, have been found, leading to suggest the existence of a daily cycle of their movements and activities within the bay. This study has also described a major decline in sighting rates throughout years raising concern about white-beaked dolphin conservation status in Icelandic waters. It is therefore highly recommended a new dedicated survey to be conducted in order to document the current population estimate, to better investigate on the energetic costs that chronic exposure to disturbances may cause, and to plan a more suitable conservation strategy for white-beaked dolphin around Iceland.
Resumo:
Sales prediction plays a huge role in modern business strategies. One of it's many use cases revolves around estimating the effects of promotions. While promotions generally have a positive effect on sales of the promoted product, they can also have a negative effect on those of other products. This phenomenon is calles sales cannibalisation. Sales cannibalisation can pose a big problem to sales forcasting algorithms. A lot of times, these algorithms focus on sales over time of a single product in a single store (a couple). This research focusses on using knowledge of a product across multiple different stores. To achieve this, we applied transfer learning on a neural model developed by Kantar Consulting to demo an approach to estimating the effect of cannibalisation. Our results show a performance increase of between 10 and 14 percent. This is a very good and desired result, and Kantar will use the approach when integrating this test method into their actual systems.
Resumo:
Wound management is a fundamental task in standard clinical practice. Automated solutions already exist for humans, but there is a lack of applications on wound management for pets. The importance of a precise and efficient wound assessment is helpful to improve diagnosis and to increase the effectiveness of treatment plans for the chronic wounds. The goal of the research was to propose an automated pipeline capable of segmenting natural light-reflected wound images of animals. Two datasets composed by light-reflected images were used in this work: Deepskin dataset, 1564 human wound images obtained during routine dermatological exams, with 145 manual annotated images; Petwound dataset, a set of 290 wound photos of dogs and cats with 0 annotated images. Two implementations of U-Net Convolutioal Neural Network model were proposed for the automated segmentation. Active Semi-Supervised Learning techniques were applied for human-wound images to perform segmentation from 10% of annotated images. Then the same models were trained, via Transfer Learning, adopting an Active Semi- upervised Learning to unlabelled animal-wound images. The combination of the two training strategies proved their effectiveness in generating large amounts of annotated samples (94% of Deepskin, 80% of PetWound) with the minimal human intervention. The correctness of automated segmentation were evaluated by clinical experts at each round of training thus we can assert that the results obtained in this thesis stands as a reliable solution to perform a correct wound image segmentation. The use of Transfer Learning and Active Semi-Supervied Learning allows to minimize labelling effort from clinicians, even requiring no starting manual annotation at all. Moreover the performances of the model with limited number of parameters suggest the implementation of smartphone-based application to this topic, helping the future standardization of light-reflected images as acknowledge medical images.
Resumo:
City streets carry a lot of information that can be exploited to improve the quality of the services the citizens receive. For example, autonomous vehicles need to act accordingly to all the element that are nearby the vehicle itself, like pedestrians, traffic signs and other vehicles. It is also possible to use such information for smart city applications, for example to predict and analyze the traffic or pedestrian flows. Among all the objects that it is possible to find in a street, traffic signs are very important because of the information they carry. This information can in fact be exploited both for autonomous driving and for smart city applications. Deep learning and, more generally, machine learning models however need huge quantities to learn. Even though modern models are very good at gener- alizing, the more samples the model has, the better it can generalize between different samples. Creating these datasets organically, namely with real pictures, is a very tedious task because of the wide variety of signs available in the whole world and especially because of all the possible light, orientation conditions and con- ditions in general in which they can appear. In addition to that, it may not be easy to collect enough samples for all the possible traffic signs available, cause some of them may be very rare to find. Instead of collecting pictures manually, it is possible to exploit data aug- mentation techniques to create synthetic datasets containing the signs that are needed. Creating this data synthetically allows to control the distribution and the conditions of the signs in the datasets, improving the quality and quantity of training data that is going to be used. This thesis work is about using copy-paste data augmentation to create synthetic data for the traffic sign recognition task.