12 resultados para computational geometry

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assessment of historical structures is a significant need for the next generations, as historical monuments represent the community’s identity and have an important cultural value to society. Most of historical structures built by using masonry which is one of the oldest and most common construction materials used in the building sector since the ancient time. Also it is considered a complex material, as it is a composition of brick units and mortar, which affects the structural performance of the building by having different mechanical behaviour with respect to different geometry and qualities given by the components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When it comes to designing a structure, architects and engineers want to join forces in order to create and build the most beautiful and efficient building. From finding new shapes and forms to optimizing the stability and the resistance, there is a constant link to be made between both professions. In architecture, there has always been a particular interest in creating new shapes and types of a structure inspired by many different fields, one of them being nature itself. In engineering, the selection of optimum has always dictated the way of thinking and designing structures. This mindset led through studies to the current best practices in construction. However, both disciplines were limited by the traditional manufacturing constraints at a certain point. Over the last decades, much progress was made from a technological point of view, allowing to go beyond today's manufacturing constraints. With the emergence of Wire-and-Arc Additive Manufacturing (WAAM) combined with Algorithmic-Aided Design (AAD), architects and engineers are offered new opportunities to merge architectural beauty and structural efficiency. Both technologies allow for exploring and building unusual and complex structural shapes in addition to a reduction of costs and environmental impacts. Through this study, the author wants to make use of previously mentioned technologies and assess their potential, first to design an aesthetically appreciated tree-like column with the idea of secondly proposing a new type of standardized and optimized sandwich cross-section to the construction industry. Parametric algorithms to model the dendriform column and the new sandwich cross-section are developed and presented in detail. A catalog draft of the latter and methods to establish it are then proposed and discussed. Finally, the buckling behavior of this latter is assessed considering standard steel and WAAM material properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Historic vaulted masonry structures often need strengthening interventions that can effectively improve their structural performance, especially during seismic events, and at the same time respect the existing setting and the modern conservation requirements. In this context, the use of innovative materials such as fiber-reinforced composite materials has been shown as an effective solution that can satisfy both aspects. This work aims to provide insight into the computational modeling of a full-scale masonry vault strengthened by fiber-reinforced composite materials and analyze the influence of the arrangement of the reinforcement on the efficiency of the intervention. At first, a parametric model of a cross vault focusing on a realistic representation of its micro-geometry is proposed. Then numerical modeling, simulating the pushover analyses, of several barrel vaults reinforced with different reinforcement configurations is performed. Finally, the results are collected and discussed in terms of force-displacement curves obtained for each proposed configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study using Large Eddy Simulation Coherent Structure Model (LES-CSM), of the flow around a simplified Ahmed body, has been done in this work of thesis. The models used are two salient geometries from the experimental investigation performed in [1], and consist, in particular, in two notch-back body geometries. Six simulation are carried out in total, changing Reynolds number and back-light angle of the model’s rear part. The Reynolds numbers used, based on the height of the models and the free stream velocity, are Re = 10000, Re = 30000 and Re = 50000. The back-light angles of the slanted surface with respect to the horizontal roof surface, that characterizes the vehicle, are taken as B = 31.8◦ and B = 42◦ respectively. The experimental results in [1] have shown that, depending on the parameter B, asymmetric and symmetric averaged flow over the back-light and in the wake for a symmetric geometry can be observed. The aims of the present work of master thesis are principally two. The first aim is to investigate and confirm the influence of the parameter B on the presence of the asymmetry of the averaged flow, and confirm the features described in the experimental results. The second important aspect is to investigate and observe the influence of the second variable, the Reynolds number, in the developing of the asymmetric flow itself. The results have shown the presence of the mentioned asymmetry as well as an influence of the Reynolds number on it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular basis of cardiac pacemaking activity, and specifically the quantitative contributions of particular mechanisms, is still debated. Reliable computational models of sinoatrial nodal (SAN) cells may provide mechanistic insights, but competing models are built from different data sets and with different underlying assumptions. To understand quantitative differences between alternative models, we performed thorough parameter sensitivity analyses of the SAN models of Maltsev & Lakatta (2009) and Severi et al (2012). Model parameters were randomized to generate a population of cell models with different properties, simulations performed with each set of random parameters generated 14 quantitative outputs that characterized cellular activity, and regression methods were used to analyze the population behavior. Clear differences between the two models were observed at every step of the analysis. Specifically: (1) SR Ca2+ pump activity had a greater effect on SAN cell cycle length (CL) in the Maltsev model; (2) conversely, parameters describing the funny current (If) had a greater effect on CL in the Severi model; (3) changes in rapid delayed rectifier conductance (GKr) had opposite effects on action potential amplitude in the two models; (4) within the population, a greater percentage of model cells failed to exhibit action potentials in the Maltsev model (27%) compared with the Severi model (7%), implying greater robustness in the latter; (5) confirming this initial impression, bifurcation analyses indicated that smaller relative changes in GKr or Na+-K+ pump activity led to failed action potentials in the Maltsev model. Overall, the results suggest experimental tests that can distinguish between models and alternative hypotheses, and the analysis offers strategies for developing anti-arrhythmic pharmaceuticals by predicting their effect on the pacemaking activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser shock peening is a technique similar to shot peening that imparts compressive residual stresses in materials for improving fatigue resistance. The ability to use a high energy laser pulse to generate shock waves, inducing a compressive residual stress field in metallic materials, has applications in multiple fields such as turbo-machinery, airframe structures, and medical appliances. The transient nature of the LSP phenomenon and the high rate of the laser's dynamic make real time in-situ measurement of laser/material interaction very challenging. For this reason and for the high cost of the experimental tests, reliable analytical methods for predicting detailed effects of LSP are needed to understand the potential of the process. Aim of this work has been the prediction of residual stress field after Laser Peening process by means of Finite Element Modeling. The work has been carried out in the Stress Methods department of Airbus Operations GmbH (Hamburg) and it includes investigation on compressive residual stresses induced by Laser Shock Peening, study on mesh sensitivity, optimization and tuning of the model by using physical and numerical parameters, validation of the model by comparing it with experimental results. The model has been realized with Abaqus/Explicit commercial software starting from considerations done on previous works. FE analyses are “Mesh Sensitive”: by increasing the number of elements and by decreasing their size, the software is able to probe even the details of the real phenomenon. However, these details, could be only an amplification of real phenomenon. For this reason it was necessary to optimize the mesh elements' size and number. A new model has been created with a more fine mesh in the trough thickness direction because it is the most involved in the process deformations. This increment of the global number of elements has been paid with an "in plane" size reduction of the elements far from the peened area in order to avoid too high computational costs. Efficiency and stability of the analyses has been improved by using bulk viscosity coefficients, a merely numerical parameter available in Abaqus/Explicit. A plastic rate sensitivity study has been also carried out and a new set of Johnson Cook's model coefficient has been chosen. These investigations led to a more controllable and reliable model, valid even for more complex geometries. Moreover the study about the material properties highlighted a gap of the model about the simulation of the surface conditions. Modeling of the ablative layer employed during the real process has been used to fill this gap. In the real process ablative layer is a super thin sheet of pure aluminum stuck on the masterpiece. In the simulation it has been simply reproduced as a 100µm layer made by a material with a yield point of 10MPa. All those new settings has been applied to a set of analyses made with different geometry models to verify the robustness of the model. The calibration of the model with the experimental results was based on stress and displacement measurements carried out on the surface and in depth as well. The good correlation between the simulation and experimental tests results proved this model to be reliable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiesel represents a possible substitute to the fossil fuels; for this reason a good comprehension of the kinetics involved is important. Due to the complexity of the biodiesel mixture a common practice is the use of surrogate molecules to study its reactivity. In this work are presented the experimental and computational results obtained for the oxidation and pyrolysis of methane and methyl formate conducted in a plug flow reactor. The work was divided into two parts: the first one was the setup assembly whilst, in the second one, was realized a comparison between the experimental and model results; these last was obtained using models available in literature. It was started studying the methane since, a validate model was available, in this way was possible to verify the reliability of the experimental results. After this first study the attention was focused on the methyl formate investigation. All the analysis were conducted at different temperatures, pressures and, for the oxidation, at different equivalence ratios. The results shown that, a good comprehension of the kinetics is reach but efforts are necessary to better evaluate kinetics parameters such as activation energy. The results even point out that the realized setup is adapt to study the oxidation and pyrolysis and, for this reason, it will be employed to study a longer chain esters with the aim to better understand the kinetic of the molecules that are part of the biodiesel mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il formalismo Mathai-Quillen (MQ) è un metodo per costruire la classe di Thom di un fibrato vettoriale attraverso una forma differenziale di profilo Gaussiano. Lo scopo di questa tesi è quello di formulare una nuova rappresentazione della classe di Thom usando aspetti geometrici della quantizzazione Batalin-Vilkovisky (BV). Nella prima parte del lavoro vengono riassunti i formalismi BV e MQ entrambi nel caso finito dimensionale. Infine sfrutteremo la trasformata di Fourier “odd" considerando la forma MQ come una funzione definita su un opportuno spazio graduato.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the pyrolysis and oxidation (phi 0.5-1-2) of methane and methyl formate (phi 0.5) in a laboratory flow reactor (Length = 50 cm, inner diameter = 2.5 cm) has been carried out at 1-4 atm and 300-1300 K temperature range. Exhaust gaseous species analysis was realized using a gas chromatographic system, Varian CP-4900 PRO Mirco-GC, with a TCD detector and using helium as carrier for a Molecular Sieve 5Å column and nitrogen for a COX column, whose temperatures and pressures were respectively of 65°C and 150kPa. Model simulations using NTUA [1], Fisher et al. [12], Grana [13] and Dooley [14] kinetic mechanisms have been performed with CHEMKIN. The work provides a basis for further development and optimization of existing detailed chemical kinetic schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical action of the heart is made possible in response to electrical events that involve the cardiac cells, a property that classifies the heart tissue between the excitable tissues. At the cellular level, the electrical event is the signal that triggers the mechanical contraction, inducing a transient increase in intracellular calcium which, in turn, carries the message of contraction to the contractile proteins of the cell. The primary goal of my project was to implement in CUDA (Compute Unified Device Architecture, an hardware architecture for parallel processing created by NVIDIA) a tissue model of the rabbit sinoatrial node to evaluate the heterogeneity of its structure and how that variability influences the behavior of the cells. In particular, each cell has an intrinsic discharge frequency, thus different from that of every other cell of the tissue and it is interesting to study the process of synchronization of the cells and look at the value of the last discharge frequency if they synchronized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La programmazione aggregata è un paradigma che supporta la programmazione di sistemi di dispositivi, adattativi ed eventualmente a larga scala, nel loro insieme -- come aggregati. L'approccio prevalente in questo contesto è basato sul field calculus, un calcolo formale che consente di definire programmi aggregati attraverso la composizione funzionale di campi computazionali, creando i presupposti per la specifica di pattern di auto-organizzazione robusti. La programmazione aggregata è attualmente supportata, in modo più o meno parziale e principalmente per la simulazione, da DSL dedicati (cf., Protelis), ma non esistono framework per linguaggi mainstream finalizzati allo sviluppo di applicazioni. Eppure, un simile supporto sarebbe auspicabile per ridurre tempi e sforzi d'adozione e per semplificare l'accesso al paradigma nella costruzione di sistemi reali, nonché per favorire la ricerca stessa nel campo. Il presente lavoro consiste nello sviluppo, a partire da un prototipo della semantica operazionale del field calculus, di un framework per la programmazione aggregata in Scala. La scelta di Scala come linguaggio host nasce da motivi tecnici e pratici. Scala è un linguaggio moderno, interoperabile con Java, che ben integra i paradigmi ad oggetti e funzionale, ha un sistema di tipi espressivo, e fornisce funzionalità avanzate per lo sviluppo di librerie e DSL. Inoltre, la possibilità di appoggiarsi, su Scala, ad un framework ad attori solido come Akka, costituisce un altro fattore trainante, data la necessità di colmare l'abstraction gap inerente allo sviluppo di un middleware distribuito. Nell'elaborato di tesi si presenta un framework che raggiunge il triplice obiettivo: la costruzione di una libreria Scala che realizza la semantica del field calculus in modo corretto e completo, la realizzazione di una piattaforma distribuita Akka-based su cui sviluppare applicazioni, e l'esposizione di un'API generale e flessibile in grado di supportare diversi scenari.