29 resultados para Web Log Data
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il progetto QRPlaces - Semantic Events, oggetto di questo lavoro, focalizza l’attenzione sull’analisi, la progettazione e l’implementazione di un sistema che sia in grado di modellare i dati, relativi a diversi eventi facenti parte del patrimonio turistico - culturale della Regione Emilia Romagna 1, rendendo evidenti i vantaggi associati ad una rappresentazione formale incentrata sulla Semantica. I dati turistico - culturali sono intesi in questo ambito sia come una rappresentazione di “qualcosa che accade in un certo punto ad un certo momento” (come ad esempio un concerto, una sagra, una raccolta fondi, una rappresentazione teatrale e quant’altro) sia come tradizioni e costumi che costituiscono il patrimonio turistico-culturale e a cui si fa spesso riferimento con il nome di “Cultural Heritage”. Essi hanno la caratteristica intrinseca di richiedere una conoscenza completa di diverse informa- zioni correlata, come informazioni di geo localizzazione relative al luogo fisico che ospita l’evento, dati biografici riferiti all’autore o al soggetto che è presente nell’evento piuttosto che riferirsi ad informazioni che descrivono nel dettaglio tutti gli oggetti, come teatri, cinema, compagnie teatrali che caratterizzano l’evento stesso. Una corretta rappresentazione della conoscenza ad essi legata richiede, pertanto, una modellazione in cui i dati possano essere interconnessi, rivelando un valore informativo che altrimenti resterebbe nascosto. Il lavoro svolto ha avuto lo scopo di realizzare un dataset rispondente alle caratteristiche tipiche del Semantic Web grazie al quale è stato possibile potenziare il circuito di comunicazione e informazione turistica QRPlaces 2. Nello specifico, attraverso la conversione ontologica di dati di vario genere relativi ad eventi dislocati nel territorio, e sfruttando i principi e le tecnologie del Linked Data, si è cercato di ottenere un modello informativo quanto più possibile correlato e arricchito da dati esterni. L’obiettivo finale è stato quello di ottenere una sorgente informativa di dati interconnessi non solo tra loro ma anche con quelli presenti in sorgenti esterne, dando vita ad un percorso di collegamenti in grado di evidenziare una ricchezza informativa utilizzabile per la creazione di valore aggiunto che altrimenti non sarebbe possibile ottenere. Questo aspetto è stato realizzato attraverso un’in- terfaccia di MashUp che utilizza come sorgente il dataset creato e tutti i collegamenti con la rete del Linked Data, in grado di reperire informazioni aggiuntive multi dominio.
Resumo:
L’Exploratory Search, paradigma di ricerca basato sulle attività di scoperta e d’apprendimento, è stato per diverso tempo ignorato dai motori di ricerca tradizionali. Invece, è spesso dalle ricerche esplorative che nascono le idee più innovative. Le recenti tecnologie del Semantic Web forniscono le soluzioni che permettono d’implementare dei motori di ricerca capaci di accompagnare gli utenti impegnati in tale tipo di ricerca. Aemoo, motore di ricerca sul quale s’appoggia questa tesi ne è un esempio efficace. A partire da quest’ultimo e sempre con l’aiuto delle tecnologie del Web of Data, questo lavoro si propone di fornire una metodologia che permette di prendere in considerazione la singolarità del profilo di ciascun utente al fine di guidarlo nella sua ricerca esplorativa in modo personalizzato. Il criterio di personalizzazione che abbiamo scelto è comportamentale, ovvero basato sulle decisioni che l’utente prende ad ogni tappa che ritma il processo di ricerca. Implementando un prototipo, abbiamo potuto testare la validità di quest’approccio permettendo quindi all’utente di non essere più solo nel lungo e tortuoso cammino che porta alla conoscenza.
Resumo:
Tesi riguardante le differenze tra Semantic Web e Web Tradizionale
Resumo:
Lo scopo di questo elaborato è di analizzare e progettare un sistema in grado di supportare la definizione dei dati nel formato utilizzato per definire in modo formale la semantica dei dati, ma soprattutto nella complessa e innovativa attività di link discovery. Una attività molto potente che, tramite gli strumenti e le regole del Web Semantico (chiamato anche Web of Data), permette data una base di conoscenza sorgente ed altre basi di conoscenza esterne e distribuite nel Web, di interconnettere i dati della base di conoscenza sorgente a quelli esterni sulla base di complessi algoritmi di interlinking. Questi algoritmi fanno si che i concetti espressi sulla base di dati sorgente ed esterne vengano interconnessi esprimendo la semantica del collegamento ed in base a dei complessi criteri di confronto definiti nel suddetto algoritmo. Tramite questa attività si è in grado quindi di aumentare notevolmente la conoscenza della base di conoscenza sorgente, se poi tutte le basi di conoscenza presenti nel Web of Data seguissero questo procedimento, la conoscenza definita aumenterebbe fino a livelli che sono limitati solo dalla immensa vastità del Web, dando una potenza di elaborazione dei dati senza eguali. Per mezzo di questo sistema si ha l’ambizioso obiettivo di fornire uno strumento che permetta di aumentare sensibilmente la presenza dei Linked Open Data principalmente sul territorio nazionale ma anche su quello internazionale, a supporto di enti pubblici e privati che tramite questo sistema hanno la possibilità di aprire nuovi scenari di business e di utilizzo dei dati, dando una potenza al dato che attualmente è solo immaginabile.
Resumo:
La capacità di estrarre entità da testi, collegarle tra loro ed eliminare possibili ambiguità tra di esse è uno degli obiettivi del Web Semantico. Chiamato anche Web 3.0, esso presenta numerose innovazioni volte ad arricchire il Web con dati strutturati comprensibili sia dagli umani che dai calcolatori. Nel reperimento di questi temini e nella definizione delle entities è di fondamentale importanza la loro univocità. Il nostro orizzonte di lavoro è quello delle università italiane e le entities che vogliamo estrarre, collegare e rendere univoche sono nomi di professori italiani. L’insieme di informazioni di partenza, per sua natura, vede la presenza di ambiguità. Attenendoci il più possibile alla sua semantica, abbiamo studiato questi dati ed abbiamo risolto le collisioni presenti sui nomi dei professori. Arald, la nostra architettura software per il Web Semantico, estrae entità e le collega, ma soprattutto risolve ambiguità e omonimie tra i professori delle università italiane. Per farlo si appoggia alla semantica dei loro lavori accademici e alla rete di coautori desumibile dagli articoli da loro pubblicati, rappresentati tramite un data cluster. In questo docu delle università italiane e le entities che vogliamo estrarre, collegare e rendere univoche sono nomi di professori italiani. Partendo da un insieme di informazioni che, per sua natura, vede la presenza di ambiguità, lo abbiamo studiato attenendoci il più possibile alla sua semantica, ed abbiamo risolto le collisioni che accadevano sui nomi dei professori. Arald, la nostra architettura software per il Web Semantico, estrae entità, le collega, ma soprattutto risolve ambiguità e omonimie tra i professori delle università italiane. Per farlo si appoggia alla semantica dei loro lavori accademici e alla rete di coautori desumibile dagli articoli da loro pubblicati tramite la costruzione di un data cluster.
Resumo:
La produzione ontologica è un processo fondamentale per la crescita del Web Semantico in quanto le ontologie rappresentano i vocabolari formali con cui strutturare il Web of Data. Le notazioni grafiche ontologiche costituiscono il mezzo ideale per progettare ontologie OWL sensate e ben strutturate. Tuttavia la successiva fase di generazione ontologica richiede all'utente un fastidioso cambio sia di prospettiva sia di strumentazione. Questa tesi propone dunque GraMOS, Graffoo to Manchester OWL Syntax, un motore di trasformazione da modelli Graffoo a ontologie formali in grado di fondere le due fasi di progettazione e generazione ontologica.
Resumo:
Obiettivo di questa tesi dal titolo “Analisi di tecniche per l’estrazione di informazioni da documenti testuali e non strutturati” è quello di mostrare tecniche e metodologie informatiche che permettano di ricavare informazioni e conoscenza da dati in formato testuale. Gli argomenti trattati includono l'analisi di software per l'estrazione di informazioni, il web semantico, l'importanza dei dati e in particolare i Big Data, Open Data e Linked Data. Si parlerà inoltre di data mining e text mining.
Resumo:
La descrizione di un'applicazione sviluppata per la visualizzazione di shapefile in google map e openstreetmap
Resumo:
Analisi e sviluppo di procedure di importazione dati per un integratore di annunci immobiliari dedicato alla vendita di soggiorni turistici in case vacanza. Il documento tratta inoltre l'implementazione di un Web Service conforme all'architettura RESTful per l'accesso e l'esportazione dei dati a soggetti terzi autorizzati tramite Digest Authentication.
Resumo:
Questo lavoro di Tesi ha come obiettivo quello di automatizzare il più possibile la comprensione automatica degli Open Data. Ciò è stato realizzato mediante la progettazione e lo sviluppo del “Semantic Detector”, una soluzione che si interpone tra il dato grezzo, quindi il dataset, e qualsiasi software ad alto livello che sfrutta questi dati per poterli effettivamente riutilizzare o riorganizzare opportunamente in un formato aggregabile.
Resumo:
Nonostante la consapevolezza sulle condizioni non ottimali della qualità dell'aria sia sempre più diffusa, a molte persone risulta ancora insidioso comprendere il significato dei dati sull'argomento tramite la sola rappresentazione grafica. L'obbiettivo di questo progetto è quello di presentare, tramite un'applicazione web interattiva, le informazioni sull'inquinamento atmosferico in maniera più semplice e coinvolgente. La strategia scelta è la Sonificazione: un processo che trasforma un dato di qualsiasi natura in un suono che ne rispecchia le caratteristiche. Su questa base, vengono approfondite le problematiche dell'inquinamento, le metodologie di rappresentazione e le debolezze di queste ultime. Dopo essere entrato in dettaglio sul funzionamento della Sonificazione e sulle sue applicazioni, il volume segue lo sviluppo del sistema in tutte le sue fasi: l'analisi dei requisiti, la scelta delle tecnologie, l'implementazione e i test. L'elaborato presta particolare attenzione a spiegare in dettaglio la realizzazione della traccia audio di Sonificazione, l'elemento più importante di tutto l'applicativo.
Resumo:
Con la crescente diffusione del web e dei servizi informatici offerti via internet, è aumentato in questi anni l’utilizzo dei data center e conseguentemente, il consumo di energia elettrica degli stessi. Il problema ambientale che comporta l’alto fabbisogno energetico, porta gli operatori di data center ad utilizzare tecniche a basso consumo e sistemi efficienti. Organizzazioni ambientali hanno rilevato che nel 2011 i consumi derivanti dai data center raggiungeranno i 100 milioni di kWh, con un costo complessivo di 7,4 milioni di dollari nei soli Stati Uniti, con una proiezione simile anche a livello globale. La seguente tesi intende valutare le tecniche in uso per diminuire il consumo energetico nei data center, e quali tecniche vengono maggiormente utilizzate per questo scopo. Innanzitutto si comincerà da una panoramica sui data center, per capire il loro funzionamento e per mostrare quali sono i componenti fondamentali che lo costituiscono; successivamente si mostrerà quali sono le parti che incidono maggiormente nei consumi, e come si devono effettuare le misurazioni per avere dei valori affidabili attraverso la rilevazione del PUE, unità di misura che valuta l’efficienza di un data center. Dal terzo capitolo si elencheranno le varie tecniche esistenti e in uso per risolvere il problema dell’efficienza energetica, mostrando alla fine una breve analisi sui metodi che hanno utilizzato le maggiori imprese del settore per risolvere il problema dei consumi nei loro data center. Lo scopo di questo elaborato è quello di capire quali sono le tecniche e le strategie per poter ridurre i consumi e aumentare l’efficienza energetica dei data center.
Resumo:
Ontology design and population -core aspects of semantic technologies- re- cently have become fields of great interest due to the increasing need of domain-specific knowledge bases that can boost the use of Semantic Web. For building such knowledge resources, the state of the art tools for ontology design require a lot of human work. Producing meaningful schemas and populating them with domain-specific data is in fact a very difficult and time-consuming task. Even more if the task consists in modelling knowledge at a web scale. The primary aim of this work is to investigate a novel and flexible method- ology for automatically learning ontology from textual data, lightening the human workload required for conceptualizing domain-specific knowledge and populating an extracted schema with real data, speeding up the whole ontology production process. Here computational linguistics plays a fundamental role, from automati- cally identifying facts from natural language and extracting frame of relations among recognized entities, to producing linked data with which extending existing knowledge bases or creating new ones. In the state of the art, automatic ontology learning systems are mainly based on plain-pipelined linguistics classifiers performing tasks such as Named Entity recognition, Entity resolution, Taxonomy and Relation extraction [11]. These approaches present some weaknesses, specially in capturing struc- tures through which the meaning of complex concepts is expressed [24]. Humans, in fact, tend to organize knowledge in well-defined patterns, which include participant entities and meaningful relations linking entities with each other. In literature, these structures have been called Semantic Frames by Fill- 6 Introduction more [20], or more recently as Knowledge Patterns [23]. Some NLP studies has recently shown the possibility of performing more accurate deep parsing with the ability of logically understanding the structure of discourse [7]. In this work, some of these technologies have been investigated and em- ployed to produce accurate ontology schemas. The long-term goal is to collect large amounts of semantically structured information from the web of crowds, through an automated process, in order to identify and investigate the cognitive patterns used by human to organize their knowledge.