7 resultados para Virtual sensor, swarm robotics, simulator, tracking system.

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis proposes a novel technology in the field of swarm robotics that allows a swarm of robots to sense a virtual environment through virtual sensors. Virtual sensing is a desirable and helpful technology in swarm robotics research activity, because it allows the researchers to efficiently and quickly perform experiments otherwise more expensive and time consuming, or even impossible. In particular, we envision two useful applications for virtual sensing technology. On the one hand, it is possible to prototype and foresee the effects of a new sensor on a robot swarm, before producing it. On the other hand, thanks to this technology it is possible to study the behaviour of robots operating in environments that are not easily reproducible inside a lab for safety reasons or just because physically infeasible. The use of virtual sensing technology for sensor prototyping aims to foresee the behaviour of the swarm enhanced with new or more powerful sensors, without producing the hardware. Sensor prototyping can be used to tune a new sensor or perform performance comparison tests between alternative types of sensors. This kind of prototyping experiments can be performed through the presented tool, that allows to rapidly develop and test software virtual sensors of different typologies and quality, emulating the behaviour of several hardware real sensors. By investigating on which sensors is better to invest, a researcher can minimize the sensors’ production cost while achieving a given swarm performance. Through augmented reality, it is possible to test the performance of the swarm in a desired virtual environment that cannot be set into the lab for physical, logistic or economical reasons. The virtual environment is sensed by the robots through properly designed virtual sensors. Virtual sensing technology allows a researcher to quickly carry out real robots experiment in challenging scenarios without all the required hardware and environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi presenta e discute le sfide per ottenere sistemi di swarm robotis affidabili e tolleranti ai guasti e quindi anche alcuni metodi per rilevare anomalie in essi, in modo tale che ipotetiche procedure per il recupero possano essere affrontate, viene sottolineata inoltre l’ importanza di un’ analisi qualitativa dei guasti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uno dei principali ambiti di ricerca dell’intelligenza artificiale concerne la realizzazione di agenti (in particolare, robot) in grado di aiutare o sostituire l’uomo nell’esecuzione di determinate attività. A tal fine, è possibile procedere seguendo due diversi metodi di progettazione: la progettazione manuale e la progettazione automatica. Quest’ultima può essere preferita alla prima nei contesti in cui occorra tenere in considerazione requisiti quali flessibilità e adattamento, spesso essenziali per lo svolgimento di compiti non banali in contesti reali. La progettazione automatica prende in considerazione un modello col quale rappresentare il comportamento dell’agente e una tecnica di ricerca (oppure di apprendimento) che iterativamente modifica il modello al fine di renderlo il più adatto possibile al compito in esame. In questo lavoro, il modello utilizzato per la rappresentazione del comportamento del robot è una rete booleana (Boolean network o Kauffman network). La scelta di tale modello deriva dal fatto che possiede una semplice struttura che rende agevolmente studiabili le dinamiche tuttavia complesse che si manifestano al suo interno. Inoltre, la letteratura recente mostra che i modelli a rete, quali ad esempio le reti neuronali artificiali, si sono dimostrati efficaci nella programmazione di robot. La metodologia per l’evoluzione di tale modello riguarda l’uso di tecniche di ricerca meta-euristiche in grado di trovare buone soluzioni in tempi contenuti, nonostante i grandi spazi di ricerca. Lavori precedenti hanno gia dimostrato l’applicabilità e investigato la metodologia su un singolo robot. Lo scopo di questo lavoro è quello di fornire prova di principio relativa a un insieme di robot, aprendo nuove strade per la progettazione in swarm robotics. In questo scenario, semplici agenti autonomi, interagendo fra loro, portano all’emergere di un comportamento coordinato adempiendo a task impossibili per la singola unità. Questo lavoro fornisce utili ed interessanti opportunità anche per lo studio delle interazioni fra reti booleane. Infatti, ogni robot è controllato da una rete booleana che determina l’output in funzione della propria configurazione interna ma anche dagli input ricevuti dai robot vicini. In questo lavoro definiamo un task in cui lo swarm deve discriminare due diversi pattern sul pavimento dell’arena utilizzando solo informazioni scambiate localmente. Dopo una prima serie di esperimenti preliminari che hanno permesso di identificare i parametri e il migliore algoritmo di ricerca, abbiamo semplificato l’istanza del problema per meglio investigare i criteri che possono influire sulle prestazioni. E’ stata così identificata una particolare combinazione di informazione che, scambiata localmente fra robot, porta al miglioramento delle prestazioni. L’ipotesi è stata confermata applicando successivamente questo risultato ad un’istanza più difficile del problema. Il lavoro si conclude suggerendo nuovi strumenti per lo studio dei fenomeni emergenti in contesti in cui le reti booleane interagiscono fra loro.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Advanced Driver Assistance Systems (ADAS) are proving to have huge potential in road safety, comfort, and efficiency. In recent years, car manufacturers have equipped their high-end vehicles with Level 2 ADAS, which are, according to SAE International, systems that combine both longitudinal and lateral active motion control. These automated driving features, while only available in highway scenarios, appear to be very promising towards the introduction of hands-free driving. However, as they rely only on an on-board sensor suite, their continuative operation may be affected by the current environmental conditions: this prevents certain functionalities such as the automated lane change, other than requiring the driver to keep constantly the hands on the steering wheel. The enabling factor for hands-free highway driving proposed by Mobileye is the integration of high-definition maps, thus leading to the so-called Level 2+. This thesis was carried out during an internship in Maserati's Virtual Engineering team. The activity consisted of the design of an L2+ Highway Assist System following the Rapid Control Prototyping approach, starting from the definition of the requirements up to the real-time implementation and testing on a simulator of the brand new compact SUV Maserati Grecale. The objective was to enhance the current Level 2 highway driving assistance system with hands-free driving capability; for this purpose an Autonomous Lane Change functionality has been designed, proposing a Model Predictive Control-based decision-maker, in charge of assessing both the feasibility and convenience of performing a lane-change maneuver. The result is a Highway Assist System capable of driving the vehicle in a traffic scenario safely and efficiently, never requiring driver intervention.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Driving simulators emulate a real vehicle drive in a virtual environment. One of the most challenging problems in this field is to create a simulated drive as real as possible to deceive the driver's senses and cause the believing to be in a real vehicle. This thesis first provides an overview of the Stuttgart driving simulator with a description of the overall system, followed by a theoretical presentation of the commonly used motion cueing algorithms. The second and predominant part of the work presents the implementation of the classical and optimal washout algorithms in a Simulink environment. The project aims to create a new optimal washout algorithm and compare the obtained results with the results of the classical washout. The classical washout algorithm, already implemented in the Stuttgart driving simulator, is the most used in the motion control of the simulator. This classical algorithm is based on a sequence of filters in which each parameter has a clear physical meaning and a unique assignment to a single degree of freedom. However, the effects on human perception are not exploited, and each parameter must be tuned online by an engineer in the control room, depending on the driver's feeling. To overcome this problem and also consider the driver's sensations, the optimal washout motion cueing algorithm was implemented. This optimal control-base algorithm treats motion cueing as a tracking problem, forcing the accelerations perceived in the simulator to track the accelerations that would have been perceived in a real vehicle, by minimizing the perception error within the constraints of the motion platform. The last chapter presents a comparison between the two algorithms, based on the driver's feelings after the test drive. Firstly it was implemented an off-line test with a step signal as an input acceleration to verify the behaviour of the simulator. Secondly, the algorithms were executed in the simulator during a test drive on several tracks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The work described in this Master’s Degree thesis was born after the collaboration with the company Maserati S.p.a, an Italian luxury car maker with its headquarters located in Modena, in the heart of the Italian Motor Valley, where I worked as a stagiaire in the Virtual Engineering team between September 2021 and February 2022. This work proposes the validation using real-world ECUs of a Driver Drowsiness Detection (DDD) system prototype based on different detection methods with the goal to overcome input signal losses and system failures. Detection methods of different categories have been chosen from literature and merged with the goal of utilizing the benefits of each of them, overcoming their limitations and limiting as much as possible their degree of intrusiveness to prevent any kind of driving distraction: an image processing-based technique for human physical signals detection as well as methods based on driver-vehicle interaction are used. A Driver-In-the-Loop simulator is used to gather real data on which a Machine Learning-based algorithm will be trained and validated. These data come from the tests that the company conducts in its daily activities so confidential information about the simulator and the drivers will be omitted. Although the impact of the proposed system is not remarkable and there is still work to do in all its elements, the results indicate the main advantages of the system in terms of robustness against subsystem failures and signal losses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the recent decades, robotics has become firmly embedded in areas such as education, teaching, medicine, psychology and many others. We focus here on social robotics; social robots are designed to interact with people in a natural and interpersonal way, often to achieve positive results in different applications. To interact and cooperate with humans in their daily-life activities, robots should exhibit human-like intelligence. The rapid expansion of social robotics and the existence of various kinds of robots on the market have allowed research groups to carry out multiple experiments. The experiments carried out have led to the collections of various kinds of data, which can be used or processed for psychological studies, and studies in other fields. However, there are no tools available in which data can be stored, processed and shared with other research groups. This thesis proposes the design and implementation of visual tool for organizing dataflows in Human Robot Interaction (HRI).