5 resultados para Topologia diferencial
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In questo elaborato vengono studiati gli arrangiamenti di iperpiani prima di tutto dal punto di vista combinatorio e, in seguito, dal punto di vista topologico. Particolare attenzione verrà riposta nello studio della coomologia del complemento di arrangiamenti complessi. Per giungere ad una completa descrizione coomologica si sfrutterà la costruzione e lo studio di particolari algebre esterne basate sulle caratteristiche combinatorie degli arrangiamenti.
Resumo:
La presente tesi si propone di fornire un breve compendio sulla teoria dei complessi casuali, ramo di recente sviluppo della topologia algebrica applicata. Nell'illustrare i risultati più significativi ottenuti in tale teoria, si è voluto enfatizzare le modalità che permettono di affrontare con strumenti probabilistici lo studio delle proprietà topologiche ed algebriche dei complessi casuali.
Resumo:
In questa tesi si è data una dimostrazione dovuta ad Andreotti e Frenkel del Teorema di Lefschetz, utilizzando gli strumenti e i risultati della Teoria di Morse.
Resumo:
Definizioni e enunciati riguardo al gruppo fondamentale, alle azioni di gruppo, ai rivestimenti, alle varietà topologiche, differenziabili e riemanniane, alle isometrie e ai gruppi discreti di isometrie. Approfondimento riguardo alle superfici connesse, compatte e orientabili con classificazione topologica, definizione di curvatura gaussiana con classificazione delle superfici in base al valore della curvatura, teorema di Killing-Hopf, teorema di uniformizzazione, enunciato del teorema che verrà dimostrato: la sfera è l'unica superficie connessa, compatta e orientabile ellittica, il toro è l'unica piatta, le somme connesse di g tori (g>1) sono iperboliche. Descrizione del piano euclideo con relativa metrica, descrizione delle sue isometrie, teorema di Chasles con dimostrazione, dimostrazione del toro come unica superficie connessa, compatta e orientabile piatta. Descrizione della sfera con relativa metrica, descrizione delle sue isometrie, dimostrazione della semplicità di SO(3), dimostrazione della sfera come unica superficie connessa, compatta e orientabile ellittica. Descrizione di due modelli del piano iperbolico, descrizione delle sue isometrie, dimostrazione del fatto che le somme connesse di g tori (g>1) sono iperboliche. Definizione di gruppo Fuchsiano e di spazio di Teichmuller.
Resumo:
Si espone la teoria quantistica non relativistica dei sistemi di particelle identiche, costruendo un opportuno spazio delle configurazioni la cui struttura è coerente con la loro indistinguibilità. Si impiegano nozioni di topologia algebrica per la formulazione di una meccanica quantistica su tale spazio, mostrando che in due dimensioni spaziali esiste una continuità di statistiche quantistiche. Le particelle con queste statistiche intermedie tra bosoni e fermioni sono chiamate anioni. Si illustra l'importanza che hanno assunto nella spiegazione dell'effetto Hall quantistico e nell'attuale ricerca sulla possibilità di creare un computer quantistico topologico.