8 resultados para TRACKING ANALYSIS
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This work proposes the analysis of tracking algorithms for point objects and extended targets particle filter on a radar application problem. Through simulations, the number of particles, the process and measurement noise of particle filter have been optimized. Four different scenarios have been considered in this work: point object with linear trajectory, point object with non-linear trajectory, extended object with linear trajectory, extended object with non-linear trajectory. The extended target has been modelled as an ellipse parametrized by the minor and major axes, the orientation angle, and the center coordinates (5 parameters overall).
Resumo:
The main purpose of my thesis has been the analysis of the space debris environment and their characterization through optical measurements. In particular I had the opportunity to contribute to the Italian Space Agency activities in space debris optical observation campaign and I cooperated directly with NASA Orbital Debris Program Office by working at the Astronomy Department of the University of Michigan for six months.
Resumo:
In the last years radar sensor networks for localization and tracking in indoor environment have generated more and more interest, especially for anti-intrusion security systems. These networks often use Ultra Wide Band (UWB) technology, which consists in sending very short (few nanoseconds) impulse signals. This approach guarantees high resolution and accuracy and also other advantages such as low price, low power consumption and narrow-band interference (jamming) robustness. In this thesis the overall data processing (done in MATLAB environment) is discussed, starting from experimental measures from sensor devices, ending with the 2D visualization of targets movements over time and focusing mainly on detection and localization algorithms. Moreover, two different scenarios and both single and multiple target tracking are analyzed.
Resumo:
Collecting and analysing data is an important element in any field of human activity and research. Even in sports, collecting and analyzing statistical data is attracting a growing interest. Some exemplar use cases are: improvement of technical/tactical aspects for team coaches, definition of game strategies based on the opposite team play or evaluation of the performance of players. Other advantages are related to taking more precise and impartial judgment in referee decisions: a wrong decision can change the outcomes of important matches. Finally, it can be useful to provide better representations and graphic effects that make the game more engaging for the audience during the match. Nowadays it is possible to delegate this type of task to automatic software systems that can use cameras or even hardware sensors to collect images or data and process them. One of the most efficient methods to collect data is to process the video images of the sporting event through mixed techniques concerning machine learning applied to computer vision. As in other domains in which computer vision can be applied, the main tasks in sports are related to object detection, player tracking, and to the pose estimation of athletes. The goal of the present thesis is to apply different models of CNNs to analyze volleyball matches. Starting from video frames of a volleyball match, we reproduce a bird's eye view of the playing court where all the players are projected, reporting also for each player the type of action she/he is performing.
Resumo:
In the last decades the evolution of radio science has made it possible to infer the atmosphere composition, the surface and the internal structure of the planets. Since the arrival of the first landers on Mars it was possible to make accurate measurements of the dynamics of this planet; in this thesis we will focus on InSight, considering the data disclosed by the JPL relative to the period from November 26th, 2018 to August 15th, 2021. In particular, the Doppler and Range measurements conducted by the RISE (Rotation and Interior Structure Experiment) will be analyzed. Since the accuracy of these measurements was improved significantly the effects due to the atmosphere of Mars might be measured so it should thus be possible to obtain a better estimate of the parameters characterizing the rotational dynamic of Mars. A large part of this study will therefore be dedicated to the study, modeling, implementation and analysis of the atmosphere of Mars, in both its components: troposphere and ionosphere. Once the complete model of Mars had been built, i.e. including the atmosphere, it was then possible to analyze the residuals, obtained between the data of the measurements carried out and the values predicted by the developed model, in order to obtain an estimate of the rotational dynamic of Mars.
Resumo:
Valvular insufficiency is a growingly common valvular heart disease that frequently is associated with regurgitation. Atrioventricular incompetency can lead to overall ventricular and atrial enlargement, volume overload, heart impairment and, if not treated, can culminate in heart failure. With the advances in technology and the increasing interest in devices that have lower post-operative burden on patients, transcatheter mitral and tricuspid valve repair systems are going through a phase of rapid development and growing use. In this work, we aimed to quantitatively assess the morphology of mitral and tricuspid annuli in patients who underwent transcatheter valve repair with MitraClip/TriClip, before and after the intervention, using three-dimensional transoesophageal echocardiography images, in order to evaluate the geometrical changes of the annulus following the intervention. For our purposes, firstly, we implemented a tool for the visualization and navigation of the volumetric data across the cardiac cycle. Then, in order to track the annulus over the cardiac cycle, we extracted five rotational slices from the volume data, selected two initial points on each slice, and tracked these points across the cardiac cycle using KLT algorithm. In a first stage we led a parameters optimization for the tracking method, and we studied the sensitivity of the KLT algorithm to the initialization points, that are manually chosen by the user. In a second stage, we analysed 10 subjects (5 for mitral regurgitation and 5 for tricuspid regurgitation), tracking their annulus before and after valve repairment. In conclusion, we found in all our 10 subjects that immediately after the intervention there is a shortening of the major diameters of the valves, mainly the shortest diameter, due to the clip application, that leads to a reduction of the perimeter and the area of the annulus.
Resumo:
Hadrontherapy is a medical treatment based on the use of charged particles beams accelerated towards deep-seated tumors on clinical patients. The reason why it is increasingly used is the favorable depth dose profile following the Bragg Peak distribution, where the release of dose is almost sharply focused near the end of the beam path. However, nuclear interactions between the beam and the human body constituents occur, generating nuclear fragments which modify the dose profile. To overcome the lack of experimental data on nuclear fragmentation reactions in the energy range of hadrontherapy interest, the FOOT (FragmentatiOn Of Target) experiment has been conceived with the main aim of measuring differential nuclear fragmentation cross sections with an uncertainty lower than 5\%. The same results are of great interest also in the radioprotection field, studying similar processes. Long-term human missions outside the Earth’s orbit are going to be planned in the next years, among which the NASA foreseen travel to Mars, and it is fundamental to protect astronauts health and electronics from radiation exposure .\\ In this thesis, a first analysis of the data taken at the GSI with a beam of $^{16}O$ at 400 $MeV/u$ impinging on a target of graphite ($C$) will be presented, showing the first preliminary results of elemental cross section and angular differential cross section. A Monte Carlo dataset was first studied to test the performance of the tracking reconstruction algorithm and to check the reliability of the full analysis chain, from hit reconstruction to cross section measurement. An high agreement was found between generated and reconstructed fragments, thus validating the adopted procedure. A preliminary experimental cross section was measured and compared with MC results, highlighting a good consistency for all the fragments.
Resumo:
In the field of industrial automation, there is an increasing need to use optimal control systems that have low tracking errors and low power and energy consumption. The motors we are dealing with are mainly Permanent Magnet Synchronous Motors (PMSMs), controlled by 3 different types of controllers: a position controller, a speed controller, and a current controller. In this thesis, therefore, we are going to act on the gains of the first two controllers by going to find, through the TwinCAT 3 software, what might be the best set of parameters. To do this, starting with the default parameters recommended by TwinCAT, two main methods were used and then compared: the method of Ziegler and Nichols, which is a tabular method, and advanced tuning, an auto-tuning software method of TwinCAT. Therefore, in order to analyse which set of parameters was the best,several experiments were performed for each case, using the Motion Control Function Blocks. Moreover, some machines, such as large robotic arms, have vibration problems. To analyse them in detail, it was necessary to use the Bode Plot tool, which, through Bode plots, highlights in which frequencies there are resonance and anti-resonance peaks. This tool also makes it easier to figure out which and where to apply filters to improve control.