9 resultados para Szemeredi`s regularity lemma
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
tbd
Resumo:
In questo lavoro si presenta il fenomeno fisico nominato moto browniano, s’illustra il modello matematico atto a descriverlo e si analizza come questo abbia avuto notevole importanza in ambito finanziario, in particolare nell’elaborazione del modello di Black, Scholes e Merton per la valutazione dei derivati.
Resumo:
Presentazione dei risultati più importanti e famosi che riguardano la congettura di Collatz. Analisi empiriche e nuovi risultati riguardanti la congettura e le sue generalizzazioni.
Resumo:
In questa tesi viene trattata la trasformata di Fourier per funzioni sommabili, con particolare riguardo per il cosiddetto teorema di inversione, che permette il calcolo di sofisticati integrali reali. Viene inoltre fornito un capitolo di premesse di analisi complessa, utili al calcolo esplicito di trasformate di Fourier.
Resumo:
The purpose of this study is to analyse the regularity of a differential operator, the Kohn Laplacian, in two settings: the Heisenberg group and the strongly pseudoconvex CR manifolds. The Heisenberg group is defined as a space of dimension 2n+1 with a product. It can be seen in two different ways: as a Lie group and as the boundary of the Siegel UpperHalf Space. On the Heisenberg group there exists the tangential CR complex. From this we define its adjoint and the Kohn-Laplacian. Then we obtain estimates for the Kohn-Laplacian and find its solvability and hypoellipticity. For stating L^p and Holder estimates, we talk about homogeneous distributions. In the second part we start working with a manifold M of real dimension 2n+1. We say that M is a CR manifold if some properties are satisfied. More, we say that a CR manifold M is strongly pseudoconvex if the Levi form defined on M is positive defined. Since we will show that the Heisenberg group is a model for the strongly pseudo-convex CR manifolds, we look for an osculating Heisenberg structure in a neighborhood of a point in M, and we want this structure to change smoothly from a point to another. For that, we define Normal Coordinates and we study their properties. We also examinate different Normal Coordinates in the case of a real hypersurface with an induced CR structure. Finally, we define again the CR complex, its adjoint and the Laplacian operator on M. We study these new operators showing subelliptic estimates. For that, we don't need M to be pseudo-complex but we ask less, that is, the Z(q) and the Y(q) conditions. This provides local regularity theorems for Laplacian and show its hypoellipticity on M.
Resumo:
Questa tesi illustra il teorema di decomposizione delle misure e come questo viene applicato alle trasformazioni che conservano la misura. Dopo aver dato le definizioni di σ-algebra e di misura ed aver enunciato alcuni teoremi di teoria della misura, si introducono due differenti concetti di separabilità: quello di separabilità stretta e quello di separabilità, collegati mediante un lemma. Si descrivono poi la funzione di densità relativa e le relative proprietà e, dopo aver definito il concetto di somma diretta di spazi di misura, si dimostra il teorema di decomposizione delle misure, che permette sotto certe ipotesi di esprimere uno spazio di misura come somma diretta di spazi di misura. Infine, dopo aver spiegato cosa significa che una trasformazione conserva la misura e che è ergodica, si dimostra il teorema di Von Neumann, per il quale le trasformazioni che conservano la misura risultano decomponibili in parti ergodiche.
Resumo:
Questa tesi si propone di verificare l'esistenza di coordinate isoterme su una superficie. Le coordinate isoterme danno localmente una mappa conforme da una varietà riemanniana bidimensionale al piano Euclideo. Se la superficie è orientabile, allora si può dare un atlante di carte isoterme, cioè le cui coordinate associate siano isoterme. Queste coordinate esistono a patto che vengano soddisfatte certe condizioni. Il risultato nelle classi di Holder è dovuto a Korn e Lichtensten. Chern ha notevolmente semplificato la loro dimostrazione.
Resumo:
In questa tesi si presenta il concetto di politopo convesso e se ne forniscono alcuni esempi, poi si introducono alcuni metodi di base e risultati significativi della teoria dei politopi. In particolare si dimostra l'equivalenza tra le due definizioni di H-politopo e di V-politopo, sfruttando il metodo di eliminazione di Fourier-Motzkin per coni. Tutto ciò ha permesso di descrivere, grazie al lemma di Farkas, alcune importanti costruzioni come il cono di recessione e l'omogeneizzazione di un insieme convesso.