11 resultados para Spectral Graph Theory
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In questo elaborato ci siamo occupati della legge di Zipf sia da un punto di vista applicativo che teorico. Tale legge empirica afferma che il rango in frequenza (RF) delle parole di un testo seguono una legge a potenza con esponente -1. Per quanto riguarda l'approccio teorico abbiamo trattato due classi di modelli in grado di ricreare leggi a potenza nella loro distribuzione di probabilità. In particolare, abbiamo considerato delle generalizzazioni delle urne di Polya e i processi SSR (Sample Space Reducing). Di questi ultimi abbiamo dato una formalizzazione in termini di catene di Markov. Infine abbiamo proposto un modello di dinamica delle popolazioni capace di unificare e riprodurre i risultati dei tre SSR presenti in letteratura. Successivamente siamo passati all'analisi quantitativa dell'andamento del RF sulle parole di un corpus di testi. Infatti in questo caso si osserva che la RF non segue una pura legge a potenza ma ha un duplice andamento che può essere rappresentato da una legge a potenza che cambia esponente. Abbiamo cercato di capire se fosse possibile legare l'analisi dell'andamento del RF con le proprietà topologiche di un grafo. In particolare, a partire da un corpus di testi abbiamo costruito una rete di adiacenza dove ogni parola era collegata tramite un link alla parola successiva. Svolgendo un'analisi topologica della struttura del grafo abbiamo trovato alcuni risultati che sembrano confermare l'ipotesi che la sua struttura sia legata al cambiamento di pendenza della RF. Questo risultato può portare ad alcuni sviluppi nell'ambito dello studio del linguaggio e della mente umana. Inoltre, siccome la struttura del grafo presenterebbe alcune componenti che raggruppano parole in base al loro significato, un approfondimento di questo studio potrebbe condurre ad alcuni sviluppi nell'ambito della comprensione automatica del testo (text mining).
Resumo:
La seguente tesi propone un’introduzione al geometric deep learning. Nella prima parte vengono presentati i concetti principali di teoria dei grafi ed introdotta una dinamica di diffusione su grafo, in analogia con l’equazione del calore. A seguire, iniziando dal linear classifier verranno introdotte le architetture che hanno portato all’ideazione delle graph convolutional networks. In conclusione, si analizzano esempi di alcuni algoritmi utilizzati nel geometric deep learning e si mostra una loro implementazione sul Cora dataset, un insieme di dati con struttura a grafo.
Resumo:
Il lavoro che ho sviluppato presso l'unità di RM funzionale del Policlinico S.Orsola-Malpighi, DIBINEM, è incentrato sull'analisi dati di resting state - functional Magnetic Resonance Imaging (rs-fMRI) mediante l'utilizzo della graph theory, con lo scopo di valutare eventuali differenze in termini di connettività cerebrale funzionale tra un campione di pazienti affetti da Nocturnal Frontal Lobe Epilepsy (NFLE) ed uno di controlli sani. L'epilessia frontale notturna è una peculiare forma di epilessia caratterizzata da crisi che si verificano quasi esclusivamente durante il sonno notturno. Queste sono contraddistinte da comportamenti motori, prevalentemente distonici, spesso complessi, e talora a semiologia bizzarra. L'fMRI è una metodica di neuroimaging avanzata che permette di misurare indirettamente l'attività neuronale. Tutti i soggetti sono stati studiati in condizioni di resting-state, ossia di veglia rilassata. In particolare mi sono occupato di analizzare i dati fMRI con un approccio innovativo in campo clinico-neurologico, rappresentato dalla graph theory. I grafi sono definiti come strutture matematiche costituite da nodi e links, che trovano applicazione in molti campi di studio per la modellizzazione di strutture di diverso tipo. La costruzione di un grafo cerebrale per ogni partecipante allo studio ha rappresentato la parte centrale di questo lavoro. L'obiettivo è stato quello di definire le connessioni funzionali tra le diverse aree del cervello mediante l'utilizzo di un network. Il processo di modellizzazione ha permesso di valutare i grafi neurali mediante il calcolo di parametri topologici che ne caratterizzano struttura ed organizzazione. Le misure calcolate in questa analisi preliminare non hanno evidenziato differenze nelle proprietà globali tra i grafi dei pazienti e quelli dei controlli. Alterazioni locali sono state invece riscontrate nei pazienti, rispetto ai controlli, in aree della sostanza grigia profonda, del sistema limbico e delle regioni frontali, le quali rientrano tra quelle ipotizzate essere coinvolte nella fisiopatologia di questa peculiare forma di epilessia.
Resumo:
Persistent homology is a branch of computational topology which uses geometry and topology for shape description and analysis. This dissertation is an introductory study to link persistent homology and graph theory, the connection being represented by various methods to build simplicial complexes from a graph. The methods we consider are the complex of cliques, of independent sets, of neighbours, of enclaveless sets and complexes from acyclic subgraphs, each revealing several properties of the underlying graph. Moreover, we apply the core ideas of persistence theory in the new context of graph theory, we define the persistent block number and the persistent edge-block number.
Resumo:
In questo lavoro estendiamo concetti classici della geometria Riemanniana al fine di risolvere le equazioni di Maxwell sul gruppo delle permutazioni $S_3$. Cominciamo dando la strutture algebriche di base e la definizione di calcolo differenziale quantico con le principali proprietà. Generalizziamo poi concetti della geometria Riemanniana, quali la metrica e l'algebra esterna, al caso quantico. Tutto ciò viene poi applicato ai grafi dando la forma esplicita del calcolo differenziale quantico su $\mathbb{K}(V)$, della metrica e Laplaciano del secondo ordine e infine dell'algebra esterna. A questo punto, riscriviamo le equazioni di Maxwell in forma geometrica compatta usando gli operatori e concetti della geometria differenziale su varietà che abbiamo generalizzato in precedenza. In questo modo, considerando l'elettromagnetismo come teoria di gauge, possiamo risolvere le equazioni di Maxwell su gruppi finiti oltre che su varietà differenziabili. In particolare, noi le risolviamo su $S_3$.
Resumo:
Complex networks analysis is a very popular topic in computer science. Unfortunately this networks, extracted from different contexts, are usually very large and the analysis may be very complicated: computation of metrics on these structures could be very complex. Among all metrics we analyse the extraction of subnetworks called communities: they are groups of nodes that probably play the same role within the whole structure. Communities extraction is an interesting operation in many different fields (biology, economics,...). In this work we present a parallel community detection algorithm that can operate on networks with huge number of nodes and edges. After an introduction to graph theory and high performance computing, we will explain our design strategies and our implementation. Then, we will show some performance evaluation made on a distributed memory architectures i.e. the supercomputer IBM-BlueGene/Q "Fermi" at the CINECA supercomputing center, Italy, and we will comment our results.
Resumo:
Il sempre crescente numero di applicazioni di reti di sensori, robot cooperanti e formazioni di veicoli, ha fatto sì che le problematiche legate al coordinamento di sistemi multi-agente (MAS) diventassero tra le più studiate nell’ambito della teoria dei controlli. Esistono numerosi approcci per affrontare il problema, spesso profondamente diversi tra loro. La strategia studiata in questa tesi è basata sulla Teoria del Consenso, che ha una natura distribuita e completamente leader-less; inoltre il contenuto informativo scambiato tra gli agenti è ridotto al minimo. I primi 3 capitoli introducono ed analizzano le leggi di interazione (Protocolli di Consenso) che permettono di coordinare un Network di sistemi dinamici. Nel capitolo 4 si pensa all'applicazione della teoria al problema del "loitering" circolare di più robot volanti attorno ad un obiettivo in movimento. Si sviluppa a tale scopo una simulazione in ambiente Matlab/Simulink, che genera le traiettorie di riferimento di raggio e centro impostabili, a partire da qualunque posizione iniziale degli agenti. Tale simulazione è stata utilizzata presso il “Center for Research on Complex Automated Systems” (CASY-DEI Università di Bologna) per implementare il loitering di una rete di quadrirotori "CrazyFlie". I risultati ed il setup di laboratorio sono riportati nel capitolo 5. Sviluppi futuri si concentreranno su algoritmi locali che permettano agli agenti di evitare collisioni durante i transitori: il controllo di collision-avoidance dovrà essere completamente indipendente da quello di consenso, per non snaturare il protocollo di Consenso stesso.
Resumo:
Monomer-dimer models are amongst the models in statistical mechanics which found application in many areas of science, ranging from biology to social sciences. This model describes a many-body system in which monoatomic and diatomic particles subject to hard-core interactions get deposited on a graph. In our work we provide an extension of this model to higher-order particles. The aim of our work is threefold: first we study the thermodynamic properties of the newly introduced model. We solve analytically some regular cases and find that, differently from the original, our extension admits phase transitions. Then we tackle the inverse problem, both from an analytical and numerical perspective. Finally we propose an application to aggregation phenomena in virtual messaging services.
Resumo:
The aim of this thesis is to show and put together the results, obtained so far, useful to tackle a conjecture of graph theory proposed in 1954 by William Thomas Tutte. The conjecture in question is Tutte's 5-flow conjecture, which states that every bridgeless graph admits a nowhere-zero 5-flow, namely a flow with non-zero integer values between -4 and 4. We will start by giving some basics on graph theory, useful for the followings, and proving some results about flows on oriented graphs and in particular about the flow polynomial. Next we will treat two cases: graphs embeddable in the plane $\mathbb{R}^2$ and graphs embeddable in the projective plane $\mathbb{P}^2$. In the first case we will see the correlation between flows and colorings and prove a theorem even stronger than Tutte's conjecture, using the 4-color theorem. In the second case we will see how in 1984 Richard Steinberg used Fleischner's Splitting Lemma to show that there can be no minimal counterexample of the conjecture in the case of graphs in the projective plane. In the fourth chapter we will look at the theorems of François Jaeger (1976) and Paul D. Seymour (1981). The former proved that every bridgeless graph admits a nowhere-zero 8-flow, the latter managed to go even further showing that every bridgeless graph admits a nowhere-zero 6-flow. In the fifth and final chapter there will be a short introduction to the Tutte polynomial and it will be shown how it is related to the flow polynomial via the Recipe Theorem. Finally we will see some applications of flows through the study of networks and their properties.
Resumo:
In this work, a prospective study conducted at the IRCCS Istituto delle Scienze Neurologiche di Bologna is presented. The aim was to investigate the brain functional connectivity of a cohort of patients (N=23) suffering from persistent olfactory dysfunction after SARS-CoV-2 infection (Post-COVID-19 syndrome), as compared to a matching group of healthy controls (N=26). In particular, starting from individual resting state functional-MRI data, different analytical approaches were adopted in order to find potential alterations in the connectivity patterns of patients’ brains. Analyses were conducted both at a whole-brain level and with a special focus on brain regions involved in the processing of olfactory stimuli (Olfactory Network). Statistical correlations between functional connectivity alterations and the results of olfactory and neuropsychological tests were investigated, to explore the associations with cognitive processes. The three approaches implemented for the analysis were the seed-based correlation analysis, the group-level Independent Component analysis and a graph-theoretical analysis of brain connectivity. Due to the relative novelty of such approaches, many implementation details and methodologies are not standardized yet and represent active research fields. Seed-based and group-ICA analyses’ results showed no statistically significant differences between groups, while relevant alterations emerged from those of the graph-based analysis. In particular, patients’ olfactory sub-graph appeared to have a less pronounced modular structure compared to the control group; locally, a hyper-connectivity of the right thalamus was observed in patients, with significant involvement of the right insula and hippocampus. Results of an exploratory correlation analysis showed a positive correlation between the graphs global modularity and the scores obtained in olfactory tests and negative correlations between the thalamus hyper-connectivity and memory tests scores.
Resumo:
In this thesis we discuss the expansion of an existing project, called CHIMeRA, which is a comprehensive biomedical network, and the analysis of its sub-components by using graph theory. We describe how it is structured internally, what are the existing databases from which it retrieves information and what machine learning techniques are used in order to produce new knowledge. We also introduce a new technique for graph exploration that is aimed to speed-up the network cover time under the condition that the analyzed graph is stellar; if this condition is satisfied, the improvement in the performance compared to the conventional exploration technique is extremely appealing. We show that the stellar structure is highly recurrent for sub-networks in CHIMeRA generated by queries, which made this technique even more interesting. Finally, we describe the convenience in using the CHIMeRA network for research purposes and what it could become in a very near future.