5 resultados para Robot-human interaction
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
La presente tesi è uno studio sugli strumenti e le tecnologie che caratterizzano l'utilizzo degli open data, in particolare, nello sviluppo di applicazioni web moderne che fanno uso di questo tipo di dati.
Resumo:
Progetto SHERPA. Installazione e configurazione del Navigaton Stack su Rover terrestre. Utilizzo e configurazione di LMS151 Sick. Utilizzo e configurazione di Asus Xtion Pro. Progettazione di software per la localizzazione e l'inseguimento di persone tramite camera di profondita.
Resumo:
Trying to explain to a robot what to do is a difficult undertaking, and only specific types of people have been able to do so far, such as programmers or operators who have learned how to use controllers to communicate with a robot. My internship's goal was to create and develop a framework that would make that easier. The system uses deep learning techniques to recognize a set of hand gestures, both static and dynamic. Then, based on the gesture, it sends a command to a robot. To be as generic as feasible, the communication is implemented using Robot Operating System (ROS). Furthermore, users can add new recognizable gestures and link them to new robot actions; a finite state automaton enforces the users' input verification and correct action sequence. Finally, the users can create and utilize a macro to describe a sequence of actions performable by a robot.
Resumo:
In the recent decades, robotics has become firmly embedded in areas such as education, teaching, medicine, psychology and many others. We focus here on social robotics; social robots are designed to interact with people in a natural and interpersonal way, often to achieve positive results in different applications. To interact and cooperate with humans in their daily-life activities, robots should exhibit human-like intelligence. The rapid expansion of social robotics and the existence of various kinds of robots on the market have allowed research groups to carry out multiple experiments. The experiments carried out have led to the collections of various kinds of data, which can be used or processed for psychological studies, and studies in other fields. However, there are no tools available in which data can be stored, processed and shared with other research groups. This thesis proposes the design and implementation of visual tool for organizing dataflows in Human Robot Interaction (HRI).
Resumo:
In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it.