7 resultados para Reactors
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Le acque di vegetazione (AV) costituiscono un serio problema di carattere ambientale, sia a causa della loro elevata produzione sia per l’ elevato contenuto di COD che oscilla fra 50 e 150 g/l. Le AV sono considerate un refluo a tasso inquinante fra i più elevati nell’ambito dell’industria agroalimentare e la loro tossicità è determinata in massima parte dalla componente fenolica. Il presente lavoro si propone di studiare e ottimizzare un processo non solo di smaltimento di tale refluo ma anche di una sua valorizzazione, utlizzandolo come materia prima per la produzione di acidi grassi e quindi di PHA, polimeri biodegradabili utilizzabili in varie applicazioni. A tale scopo sono stati utilizzati due bioreattori anaerobici a biomassa adesa, di identica configurazione, con cui si sono condotti due esperimenti in continuo a diverse temperature e carichi organici al fine di studiare l’influenza di tali parametri sul processo. Il primo esperimento è stato condotto a 35°C e carico organico pari a 12,39 g/Ld, il secondo a 25°C e carico organico pari a 8,40 g/Ld. Si è scelto di allestire e mettere in opera un processo a cellule immobilizzate in quanto questa tecnologia si è rivelata vantaggiosa nel trattamento continuo di reflui ad alto contenuto di COD e carichi variabili. Inoltre si è scelto di lavorare in continuo poiché tale condizione, per debiti tempi di ritenzione idraulica, consente di minimizzare la metanogenesi, mediata da microrganismi con basse velocità specifiche di crescita. Per costituire il letto fisso dei due reattori si sono utilizzati due diversi tipi di supporto, in modo da poter studiare anche l’influenza di tale parametro, in particolare si è fatto uso di carbone attivo granulare (GAC) e filtri ceramici Vukopor S10 (VS). Confrontando i risultati si è visto che la massima quantità di VFA prodotta nell’ambito del presente studio si ha nel VS mantenuto a 25°C: in tale condizione si arriva infatti ad un valore di VFA prodotti pari a 524,668 mgCOD/L. Inoltre l’effluente in uscita risulta più concentrato in termini di VFA rispetto a quello in entrata: nell’alimentazione la percentuale di materiale organico presente sottoforma di acidi grassi volatili era del 54 % e tale percentuale, in uscita dai reattori, ha raggiunto il 59 %. Il VS25 rappresenta anche la condizione in cui il COD degradato si è trasformato in percentuale minore a metano (2,35 %) e questo a prova del fatto che l’acidogenesi ha prevalso sulla metanogenesi. Anche nella condizione più favorevole alla produzione di VFA però, si è riusciti ad ottenere una loro concentrazione in uscita (3,43 g/L) inferiore rispetto a quella di tentativo (8,5 g/L di VFA) per il processo di produzione di PHA, sviluppato da un gruppo di ricerca dell’università “La Sapienza” di Roma, relativa ad un medium sintetico. Si può constatare che la modesta produzione di VFA non è dovuta all’eccessiva degradazione del COD, essendo questa nel VS25 appena pari al 6,23%, ma piuttosto è dovuta a una scarsa concentrazione di VFA in uscita. Questo è di buon auspicio nell’ottica di ottimizzare il processo migliorandone le prestazioni, poiché è possibile aumentare tale concentrazione aumentando la conversione di COD in VFA che nel VS25 è pari a solo 5,87%. Per aumentare tale valore si può agire su vari parametri, quali la temperatura e il carico organico. Si è visto che il processo di acidogenesi è favorito, per il VS, per basse temperature e alti carichi organici. Per quanto riguarda il reattore impaccato con carbone attivo la produzione di VFA è molto ridotta per tutti i valori di temperatura e carichi organici utilizzati. Si può quindi pensare a un’applicazione diversa di tale tipo di reattore, ad esempio per la produzione di metano e quindi di energia.
Resumo:
Il presente elaborato è stato finalizzato allo sviluppo di un processo di digestione anaerobica della frazione organica dei rifiuti solidi urbani (FORSU oppure, in lingua inglese OFMSW, Organic Fraction of Municipal Solid Waste) provenienti da raccolta indifferenziata e conseguente produzione di biogas da impiegarsi per il recupero energetico. Questo lavoro rientra nell’ambito di un progetto, cofinanziato dalla Regione Emilia Romagna attraverso il Programma Regionale per la Ricerca Industriale, l’Innovazione e il Trasferimento Tecnologico (PRRIITT), sviluppato dal Dipartimento di Chimica Applicata e Scienza dei Materiali (DICASM) dell’Università di Bologna in collaborazione con la Facoltà di Ingegneria dell’Università di Ferrara e con la società Recupera s.r.l. che applicherà il processo nell’impianto pilota realizzato presso il proprio sito di biostabilizzazione e compostaggio ad Ostellato (FE). L’obiettivo è stato la verifica della possibilità di impiegare la frazione organica dei rifiuti indifferenziati per la produzione di biogas, e in particolare di metano, attraverso un processo di digestione anaerobica previo trattamento chimico oppure in codigestione con altri substrati organici facilmente fermentabili. E’ stata inoltre studiata la possibilità di impiego di reattori con biomassa adesa per migliorare la produzione specifica di metano e diminuire la lag phase. Dalla sperimentazione si può concludere che è possibile giungere allo sviluppo di metano dalla purea codigerendola assieme a refluo zootecnico. Per ottenere però produzioni significative la quantità di solidi volatili apportati dal rifiuto non deve superare il 50% dei solidi volatili complessivi. Viceversa, l’addizione di solfuri alla sola purea si è dimostrata ininfluente nel tentativo di sottrarre gli agenti inibitori della metanogenesi. Inoltre, l’impiego di supporti di riempimento lavorando attraverso processi batch sequenziali permette di eliminare, nei cicli successivi al primo, la lag phase dei batteri metanogeni ed incrementare la produzione specifica di metano.
Resumo:
In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.
Resumo:
This study fits into the context of activities aim at waste bioremediation and valorization through the production of energy according to principles of environmental sustainability. The experimental work was carried out at the laboratories of the Department of Civil Engineering, Environmental and Materials (DICAM) of the Faculty of Engineering. The main objective was to enhance the treatment of high organic loading waste, such as manure and cheese whey, through advanced anaerobic digestion systems in order to obtain biogas rich in methane. On the basis of the premise that the environmental conditions pertaining in most anaerobic wastewater digesters are not optimal for both fermentative and methanogenic microorganisms, the research was particularly focused on the implementation of two-phase anaerobic digesters. In fact a two-phase process permits selection and enrichment of different bacteria in each digester by independently controlling the digester operating conditions. Thus, the first phase (acidogenesis) can be operated to optimize acidogenic growth and the second phase (methanogenesis) to optimize methanogenic growth. (Ince O. , 1998). Before reactors’ set up, , some lab scale experiments were carried out to identify the best manure and whey ratio and the best conditions of temperature, pH, hydraulic retention time of acidogenesis an methanogenic phases.
Resumo:
The EBPR (Enhanced Biological Phosphorus Removal) is a type of secondary treatment in WWTPs (WasteWater Treatment Plants), quite largely used in full-scale plants worldwide. The phosphorus occurring in aquatic systems in high amounts can cause eutrophication and consequently the death of fauna and flora. A specific biomass is used in order to remove the phosphorus, the so-called PAOs (Polyphosphate Accumulating Organisms) that accumulate the phosphorus in form of polyphosphate in their cells. Some of these organisms, the so-called DPAO (Denitrifying Polyphosphate Accumulating Organisms) use as electron acceptor the nitrate or nitrite, contributing in this way also to the removal of these compounds from the wastewater, but there could be side reactions leading to the formation of nitrous oxides. The aim of this project was to simulate in laboratory scale a EBPR, acclimatizing and enriching the specialized biomass. Two bioreactors were operated as Sequencing Batch Reactors, one enriched in Accumulibacter, the other in Tetrasphaera (both PAOs): Tetrasphaera microorganisms are able to uptake aminoacids as carbon source, Accumulibacter uptake organic carbon (volatile fatty acids, VFA). In order to measure the removal of COD, phosphorus and nitrogen-derivate compounds, different analysis were performed: spectrophotometric measure of phosphorus, nitrate, nitrite and ammonia concentrations, TOC (Total Organic Carbon, measuring the carbon consumption), VFA via HPLC (High Performance Liquid Chromatography), total and volatile suspended solids following standard methods APHA, qualitative microorganism population via FISH (Fluorescence In Situ Hybridization). Batch test were also performed to monitor the NOx production. Both specialized populations accumulated as a result of SBR operations; however, Accumulibacter were found to uptake phosphates at higher extents. Both populations were able to remove efficiently nitrates and organic compounds occurring in the feeding. The experimental work was carried out at FCT of Universidade Nova de Lisboa (FCT-UNL) from February to July 2014.
Resumo:
The first part of this essay aims at investigating the already available and promising technologies for the biogas and bio-hydrogen production from anaerobic digestion of different organic substrates. One strives to show all the peculiarities of this complicate process, such as continuity, number of stages, moisture, biomass preservation and rate of feeding. The main outcome of this part is the awareness of the huge amount of reactor configurations, each of which suitable for a few types of substrate and circumstance. Among the most remarkable results, one may consider first of all the wet continuous stirred tank reactors (CSTR), right to face the high waste production rate in urbanised and industrialised areas. Then, there is the up-flow anaerobic sludge blanket reactor (UASB), aimed at the biomass preservation in case of highly heterogeneous feedstock, which can also be treated in a wise co-digestion scheme. On the other hand, smaller and scattered rural realities can be served by either wet low-rate digesters for homogeneous agricultural by-products (e.g. fixed-dome) or the cheap dry batch reactors for lignocellulose waste and energy crops (e.g. hybrid batch-UASB). The biological and technical aspects raised during the first chapters are later supported with bibliographic research on the important and multifarious large-scale applications the products of the anaerobic digestion may have. After the upgrading techniques, particular care was devoted to their importance as biofuels, highlighting a further and more flexible solution consisting in the reforming to syngas. Then, one shows the electricity generation and the associated heat conversion, stressing on the high potential of fuel cells (FC) as electricity converters. Last but not least, both the use as vehicle fuel and the injection into the gas pipes are considered as promising applications. The consideration of the still important issues of the bio-hydrogen management (e.g. storage and delivery) may lead to the conclusion that it would be far more challenging to implement than bio-methane, which can potentially “inherit” the assets of the similar fossil natural gas. Thanks to the gathered knowledge, one devotes a chapter to the energetic and financial study of a hybrid power system supplied by biogas and made of different pieces of equipment (natural gas thermocatalitic unit, molten carbonate fuel cell and combined-cycle gas turbine structure). A parallel analysis on a bio-methane-fed CCGT system is carried out in order to compare the two solutions. Both studies show that the apparent inconvenience of the hybrid system actually emphasises the importance of extending the computations to a broader reality, i.e. the upstream processes for the biofuel production and the environmental/social drawbacks due to fossil-derived emissions. Thanks to this “boundary widening”, one can realise the hidden benefits of the hybrid over the CCGT system.
Resumo:
In questo elaborato è stato discusso il tema della depurazione delle acque reflue, in particolar modo il sistema SBR. L'SBR (Sequencing Batch Reactors) è un sistema di impianti di depurazione composto da una vasca di raccolta del liquame e una o più vasche in parallelo, i reattori, che consistono nel vero e proprio cure dell'impianto. Di fatto le fasi del processo depurativo restano immutate rispetto ad un impianto tradizionale, ma l'SBR introduce come nuovo parametro dimensionale il tempo. infatti, tutti i trattamenti depurativi sono svolti sequenzialmente nel reattore. Un programma gestisce le varie fasi del trattamento esclusivamente sulla base della loro durata (stabilita relativamente alla natura del refluo e quindi ai trattamenti da svolgere in maniera più o meno intensiva). Questa caratteristica rende l'intero impianto molto versatile nel caso di variazioni dei dati in ingresso. Per questo motivo gli impianti SBR sono ottimi per la piccola media impresa, in quanto sono facilmente adattabili alle variazioni stagionali di produzione. Sono inoltre possibili realizzazioni di impianti per il trattamento di ingenti portate, o elevate concentrazioni, ponendo più reattori in parallelo alimentati dalle stessa vasca di accumulo. In questo modo è possibile svolgere un maggiore numero di cicli depurativi al giorno e quindi rispettare i valori normativi in uscita dell'impianto. In conclusione questa tipologia d'impianto presenta notevoli vantaggi fra i quali anche quello di avere bassi costi operativi. La motivazione di ciò sta nel fatto che l'impianto lavora solo se ha effettivamente una portata, per cui se non vi è presenza di refluo il reattore non lavora e quindi non comporta costi.