8 resultados para Print on demand
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Nowadays, data handling and data analysis in High Energy Physics requires a vast amount of computational power and storage. In particular, the world-wide LHC Com- puting Grid (LCG), an infrastructure and pool of services developed and deployed by a ample community of physicists and computer scientists, has demonstrated to be a game changer in the efficiency of data analyses during Run-I at the LHC, playing a crucial role in the Higgs boson discovery. Recently, the Cloud computing paradigm is emerging and reaching a considerable adoption level by many different scientific organizations and not only. Cloud allows to access and utilize not-owned large computing resources shared among many scientific communities. Considering the challenging requirements of LHC physics in Run-II and beyond, the LHC computing community is interested in exploring Clouds and see whether they can provide a complementary approach - or even a valid alternative - to the existing technological solutions based on Grid. In the LHC community, several experiments have been adopting Cloud approaches, and in particular the experience of the CMS experiment is of relevance to this thesis. The LHC Run-II has just started, and Cloud-based solutions are already in production for CMS. However, other approaches of Cloud usage are being thought of and are at the prototype level, as the work done in this thesis. This effort is of paramount importance to be able to equip CMS with the capability to elastically and flexibly access and utilize the computing resources needed to face the challenges of Run-III and Run-IV. The main purpose of this thesis is to present forefront Cloud approaches that allow the CMS experiment to extend to on-demand resources dynamically allocated as needed. Moreover, a direct access to Cloud resources is presented as suitable use case to face up with the CMS experiment needs. Chapter 1 presents an overview of High Energy Physics at the LHC and of the CMS experience in Run-I, as well as preparation for Run-II. Chapter 2 describes the current CMS Computing Model, and Chapter 3 provides Cloud approaches pursued and used within the CMS Collaboration. Chapter 4 and Chapter 5 discuss the original and forefront work done in this thesis to develop and test working prototypes of elastic extensions of CMS computing resources on Clouds, and HEP Computing “as a Service”. The impact of such work on a benchmark CMS physics use-cases is also demonstrated.
Resumo:
In questa tesi ci focalizzeremo sul connubio TV ed internet che rivoluzionerà l’erogazione dei servizi verso i telespettatori e di conseguenza il marketing pubblicitario in questo contesto. Partiremo dalla storia della televisione in Italia e dei dispositivi TV per poi analizzare i primi fenomeni di utilizzo televisivo del canale web e la conseguente nascita dei primi social media e servizi di video on demand. La seconda parte di questa tesi farà una larga panoramica sul marketing televisivo ed il web marketing, fino ad arrivare al punto di massima prossimità tra i due canali, ovvero l’advertising correlato ai contenuti video presenti sul web. Nella terza ed ultima parte analizzeremo le prime piattaforme di WebTV e servizi di internet television, per poi focalizzarci sui probabili risvolti e prospettive future sia a livello di fruizione dei contenuti che pubblicitario. Questo fenomeno avrà una netta influenza nel Marketing considerando che dal 1984 la TV è il mezzo che raccoglie la maggior parte degli investimenti pubblicitari ed il web è il media in maggiore ascesa a livello di penetrazione e popolarità negli ultimi anni.
Resumo:
La tesi si colloca nell'ambito del Cloud Computing, un modello in grado di abilitare l’accesso in rete in maniera condivisa, pratica e on-demand, di diverse risorse computazionali, come potenza di calcolo o memoria di massa. Questo lavoro ha come scopo la realizzazione di una Cloud privata, per la fornitura di servizi, basata su un’architettura P2P. L’elaborato vuole studiare il caso di un sistema P2P di livello infrastruttura (IaaS) e propone la realizzazione di un prototipo capace di sostenere un insime basilare di API. Verranno utilizzati protocolli di gossip per la costruzione dei servizi fondamentali.
Resumo:
Il termine cloud ha origine dal mondo delle telecomunicazioni quando i provider iniziarono ad utilizzare servizi basati su reti virtuali private (VPN) per la comunicazione dei dati. Il cloud computing ha a che fare con la computazione, il software, l’accesso ai dati e servizi di memorizzazione in modo tale che l’utente finale non abbia idea della posizione fisica dei dati e la configurazione del sistema in cui risiedono. Il cloud computing è un recente trend nel mondo IT che muove la computazione e i dati lontano dai desktop e dai pc portatili portandoli in larghi data centers. La definizione di cloud computing data dal NIST dice che il cloud computing è un modello che permette accesso di rete on-demand a un pool condiviso di risorse computazionali che può essere rapidamente utilizzato e rilasciato con sforzo di gestione ed interazione con il provider del servizio minimi. Con la proliferazione a larga scala di Internet nel mondo le applicazioni ora possono essere distribuite come servizi tramite Internet; come risultato, i costi complessivi di questi servizi vengono abbattuti. L’obbiettivo principale del cloud computing è utilizzare meglio risorse distribuite, combinarle assieme per raggiungere un throughput più elevato e risolvere problemi di computazione su larga scala. Le aziende che si appoggiano ai servizi cloud risparmiano su costi di infrastruttura e mantenimento di risorse computazionali poichè trasferiscono questo aspetto al provider; in questo modo le aziende si possono occupare esclusivamente del business di loro interesse. Mano a mano che il cloud computing diventa più popolare, vengono esposte preoccupazioni riguardo i problemi di sicurezza introdotti con l’utilizzo di questo nuovo modello. Le caratteristiche di questo nuovo modello di deployment differiscono ampiamente da quelle delle architetture tradizionali, e i meccanismi di sicurezza tradizionali risultano inefficienti o inutili. Il cloud computing offre molti benefici ma è anche più vulnerabile a minacce. Ci sono molte sfide e rischi nel cloud computing che aumentano la minaccia della compromissione dei dati. Queste preoccupazioni rendono le aziende restie dall’adoperare soluzioni di cloud computing, rallentandone la diffusione. Negli anni recenti molti sforzi sono andati nella ricerca sulla sicurezza degli ambienti cloud, sulla classificazione delle minacce e sull’analisi di rischio; purtroppo i problemi del cloud sono di vario livello e non esiste una soluzione univoca. Dopo aver presentato una breve introduzione sul cloud computing in generale, l’obiettivo di questo elaborato è quello di fornire una panoramica sulle vulnerabilità principali del modello cloud in base alle sue caratteristiche, per poi effettuare una analisi di rischio dal punto di vista del cliente riguardo l’utilizzo del cloud. In questo modo valutando i rischi e le opportunità un cliente deve decidere se adottare una soluzione di tipo cloud. Alla fine verrà presentato un framework che mira a risolvere un particolare problema, quello del traffico malevolo sulla rete cloud. L’elaborato è strutturato nel modo seguente: nel primo capitolo verrà data una panoramica del cloud computing, evidenziandone caratteristiche, architettura, modelli di servizio, modelli di deployment ed eventuali problemi riguardo il cloud. Nel secondo capitolo verrà data una introduzione alla sicurezza in ambito informatico per poi passare nello specifico alla sicurezza nel modello di cloud computing. Verranno considerate le vulnerabilità derivanti dalle tecnologie e dalle caratteristiche che enucleano il cloud, per poi passare ad una analisi dei rischi. I rischi sono di diversa natura, da quelli prettamente tecnologici a quelli derivanti da questioni legali o amministrative, fino a quelli non specifici al cloud ma che lo riguardano comunque. Per ogni rischio verranno elencati i beni afflitti in caso di attacco e verrà espresso un livello di rischio che va dal basso fino al molto alto. Ogni rischio dovrà essere messo in conto con le opportunità che l’aspetto da cui quel rischio nasce offre. Nell’ultimo capitolo verrà illustrato un framework per la protezione della rete interna del cloud, installando un Intrusion Detection System con pattern recognition e anomaly detection.
Resumo:
Cloud services are becoming ever more important for everyone's life. Cloud storage? Web mails? Yes, we don't need to be working in big IT companies to be surrounded by cloud services. Another thing that's growing in importance, or at least that should be considered ever more important, is the concept of privacy. The more we rely on services of which we know close to nothing about, the more we should be worried about our privacy. In this work, I will analyze a prototype software based on a peer to peer architecture for the offering of cloud services, to see if it's possible to make it completely anonymous, meaning that not only the users using it will be anonymous, but also the Peers composing it will not know the real identity of each others. To make it possible, I will make use of anonymizing networks like Tor. I will start by studying the state of art of Cloud Computing, by looking at some real example, followed by analyzing the architecture of the prototype, trying to expose the differences between its distributed nature and the somehow centralized solutions offered by the famous vendors. After that, I will get as deep as possible into the working principle of the anonymizing networks, because they are not something that can just be 'applied' mindlessly. Some de-anonymizing techniques are very subtle so things must be studied carefully. I will then implement the required changes, and test the new anonymized prototype to see how its performances differ from those of the standard one. The prototype will be run on many machines, orchestrated by a tester script that will automatically start, stop and do all the required API calls. As to where to find all these machines, I will make use of Amazon EC2 cloud services and their on-demand instances.
Resumo:
La nostra sfida è stata sviluppare un dispositivo che potesse riunire differenti funzionalità, dalla telepresenza alla visione dei dati on demand, e fosse in grado di portare innovazione nel panorama attuale. Abbiamo quindi deciso di creare un device che potesse svolgere attività d’ispezione e monitoraggio, concentrandoci nel corso dell’implementazione su alcuni possibili campi di utilizzo. Il sistema che abbiamo realizzato è open-source, modulare e dinamico, in grado di rispondere a esigenze diverse e facilmente riadattabile. Il prototipo progettato è in grado di comunicare con uno smartphone, grazie al quale viene guidato dall’utente primario, e di trasmettere in rete i dati rilevati dai diversi sensori integrati. Le informazioni generate sono gestibili attraverso una piattaforma online: il device utilizza il Cloud per storicizzare i dati, rendendoli potenzialmente accessibili a chiunque. Per la configurazione hardware abbiamo usato la kit-board Pi2Go e la piattaforma Raspberry Pi, alle quali abbiamo unito una videocamera e alcuni sensori di prossimità, temperatura e umidità e distanza. È nato così il prototipo InspectorPi, un veicolo telecomandato tramite dispositivo mobile in grado di esplorare ambienti ostili in cui vi sono difficoltà fisiche o ambientali alle quali sovvenire.
Resumo:
Al Large Hadron Collider (LHC) ogni anno di acquisizione dati vengono raccolti più di 30 petabyte di dati dalle collisioni. Per processare questi dati è necessario produrre un grande volume di eventi simulati attraverso tecniche Monte Carlo. Inoltre l'analisi fisica richiede accesso giornaliero a formati di dati derivati per centinaia di utenti. La Worldwide LHC Computing GRID (WLCG) è una collaborazione interazionale di scienziati e centri di calcolo che ha affrontato le sfide tecnologiche di LHC, rendendone possibile il programma scientifico. Con il prosieguo dell'acquisizione dati e la recente approvazione di progetti ambiziosi come l'High-Luminosity LHC, si raggiungerà presto il limite delle attuali capacità di calcolo. Una delle chiavi per superare queste sfide nel prossimo decennio, anche alla luce delle ristrettezze economiche dalle varie funding agency nazionali, consiste nell'ottimizzare efficientemente l'uso delle risorse di calcolo a disposizione. Il lavoro mira a sviluppare e valutare strumenti per migliorare la comprensione di come vengono monitorati i dati sia di produzione che di analisi in CMS. Per questa ragione il lavoro è comprensivo di due parti. La prima, per quanto riguarda l'analisi distribuita, consiste nello sviluppo di uno strumento che consenta di analizzare velocemente i log file derivanti dalle sottomissioni di job terminati per consentire all'utente, alla sottomissione successiva, di sfruttare meglio le risorse di calcolo. La seconda parte, che riguarda il monitoring di jobs sia di produzione che di analisi, sfrutta tecnologie nel campo dei Big Data per un servizio di monitoring più efficiente e flessibile. Un aspetto degno di nota di tali miglioramenti è la possibilità di evitare un'elevato livello di aggregazione dei dati già in uno stadio iniziale, nonché di raccogliere dati di monitoring con una granularità elevata che tuttavia consenta riprocessamento successivo e aggregazione “on-demand”.