5 resultados para Poisson theorem

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesi consiste nella ricerca di un candidato ideale per la soluzione del problema di Dirichlet. Vengono affrontati gli argomenti in maniera graduale, partendo dalle funzioni armoniche e le loro relative proprietà, passando per le identità e le formule di rappresentazione di Green, per finire nell'analisi del problema sopra citato, mediante i risultati precedentemente ottenuti, per concludere trovando la formula integrale di Poisson come soluzione ma anche come formula generale per sviluppi in vari ambiti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il tema centrale di questa tesi è lo studio del problema di Dirichlet per il Laplaciano in R^2 usando le serie di Fourier. Il problema di Dirichlet per il Laplaciano consiste nel determinare una funzione f armonica e regolare in un dominio limitato D quando sono noti i valori che f assume sul suo bordo. Ammette una sola soluzione, ma non esistono criteri generali per ricavarla. In questa tesi si mostra come la formula integrale di Poisson, sotto determinate condizioni, risolva il problema di Dirichlet in R^2 e in R^n.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La trasformata di Karhunen-Loève monodimensionale è la decomposizione di un processo stocastico del secondo ordine a parametrizzazione continua in coefficienti aleatori scorrelati. Nella presente dissertazione, la trasformata è ottenuta per via analitica, proiettando il processo, considerato in un intervallo di tempo limitato [a,b], su una base deterministica ottenuta dalle autofunzioni dell'operatore di Hilbert-Schmidt di covarianza corrispondenti ad autovalori positivi. Fondamentalmente l'idea del metodo è, dal primo, trovare gli autovalori positivi dell'operatore integrale di Hilbert-Schmidt, che ha in Kernel la funzione di covarianza del processo. Ad ogni tempo dell'intervallo, il processo è proiettato sulla base ortonormale dello span delle autofunzioni dell'operatore di Hilbert-Schmidt che corrispondono ad autovalori positivi. Tale procedura genera coefficienti aleatori che si rivelano variabili aleatorie centrate e scorrelate. L'espansione in serie che risulta dalla trasformata è una combinazione lineare numerabile di coefficienti aleatori di proiezione ed autofunzioni convergente in media quadratica al processo, uniformemente sull'intervallo temporale. Se inoltre il processo è Gaussiano, la convergenza è quasi sicuramente sullo spazio di probabilità (O,F,P). Esistono molte altre espansioni in serie di questo tipo, tuttavia la trasformata di Karhunen-Loève ha la peculiarità di essere ottimale rispetto all'errore totale in media quadratica che consegue al troncamento della serie. Questa caratteristica ha conferito a tale metodo ed alle sue generalizzazioni un notevole successo tra le discipline applicate.