7 resultados para Physical model

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In these last years, systems engineering has became one of the major research domains. The complexity of systems has increased constantly and nowadays Cyber-Physical Systems (CPS) are a category of particular interest: these, are systems composed by a cyber part (computer-based algorithms) that monitor and control some physical processes. Their development and simulation are both complex due to the importance of the interaction between the cyber and the physical entities: there are a lot of models written in different languages that need to exchange information among each other. Normally people use an orchestrator that takes care of the simulation of the models and the exchange of informations. This orchestrator is developed manually and this is a tedious and long work. Our proposition is to achieve to generate the orchestrator automatically through the use of Co-Modeling, i.e. by modeling the coordination. Before achieving this ultimate goal, it is important to understand the mechanisms and de facto standards that could be used in a co-modeling framework. So, I studied the use of a technology employed for co-simulation in the industry: FMI. In order to better understand the FMI standard, I realized an automatic export, in the FMI format, of the models realized in an existing software for discrete modeling: TimeSquare. I also developed a simple physical model in the existing open source openmodelica tool. Later, I started to understand how works an orchestrator, developing a simple one: this will be useful in future to generate an orchestrator automatically.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Deep Learning architectures give brilliant results in a large variety of fields, but a comprehensive theoretical description of their inner functioning is still lacking. In this work, we try to understand the behavior of neural networks by modelling in the frameworks of Thermodynamics and Condensed Matter Physics. We approach neural networks as in a real laboratory and we measure the frequency spectrum and the entropy of the weights of the trained model. The stochasticity of the training occupies a central role in the dynamics of the weights and makes it difficult to assimilate neural networks to simple physical systems. However, the analogy with Thermodynamics and the introduction of a well defined temperature leads us to an interesting result: if we eliminate from a CNN the "hottest" filters, the performance of the model remains the same, whereas, if we eliminate the "coldest" ones, the performance gets drastically worst. This result could be exploited in the realization of a training loop which eliminates the filters that do not contribute to loss reduction. In this way, the computational cost of the training will be lightened and more importantly this would be done by following a physical model. In any case, beside important practical applications, our analysis proves that a new and improved modeling of Deep Learning systems can pave the way to new and more efficient algorithms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present thesis work proposes a new physical equivalent circuit model for a recently proposed semiconductor transistor, a 2-drain MSET (Multiple State Electrostatically Formed Nanowire Transistor). It presents a new software-based experimental setup that has been developed for carrying out numerical simulations on the device and on equivalent circuits. As of 2015, we have already approached the scaling limits of the ubiquitous CMOS technology that has been in the forefront of mainstream technological advancement, so many researchers are exploring different ideas in the realm of electrical devices for logical applications, among them MSET transistors. The idea that underlies MSETs is that a single multiple-terminal device could replace many traditional transistors. In particular a 2-drain MSET is akin to a silicon multiplexer, consisting in a Junction FET with independent gates, but with a split drain, so that a voltage-controlled conductive path can connect either of the drains to the source. The first chapter of this work presents the theory of classical JFETs and its common equivalent circuit models. The physical model and its derivation are presented, the current state of equivalent circuits for the JFET is discussed. A physical model of a JFET with two independent gates has been developed, deriving it from previous results, and is presented at the end of the chapter. A review of the characteristics of MSET device is shown in chapter 2. In this chapter, the proposed physical model and its formulation are presented. A listing for the SPICE model was attached as an appendix at the end of this document. Chapter 3 concerns the results of the numerical simulations on the device. At first the research for a suitable geometry is discussed and then comparisons between results from finite-elements simulations and equivalent circuit runs are made. Where points of challenging divergence were found between the two numerical results, the relevant physical processes are discussed. In the fourth chapter the experimental setup is discussed. The GUI-based environments that allow to explore the four-dimensional solution space and to analyze the physical variables inside the device are described. It is shown how this software project has been structured to overcome technical challenges in structuring multiple simulations in sequence, and to provide for a flexible platform for future research in the field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This master thesis work is focused on the development of a predictive EHC control function for a diesel plug-in hybrid electric vehicle equipped with a EURO 7 compliant exhaust aftertreatment system (EATS), with the purpose of showing the advantages provided by the implementation of a predictive control strategy with respect to a rule-based one. A preliminary step will be the definition of an accurate powertrain and EATS physical model, starting from already existing and validated applications. Then, a rule-based control strategy managing the torque split between the electric motor (EM) and the internal combustion engine (ICE) will be developed and calibrated, with the main target of limiting tailpipe NOx emission by taking into account EM and ICE operating conditions together with EATS conversion efficiency. The information available from vehicle connectivity will be used to reconstruct the future driving scenario, also referred to as electronic horizon (eHorizon), and in particular to predict ICE first start. Based on this knowledge, an EATS pre-heating phase can be planned to avoid low pollutant conversion efficiencies, thus preventing high NOx emission due to engine cold start. Consequently, the final NOx emission over the complete driving cycle will be strongly reduced, allowing to comply with the limits potentially set by the incoming EURO 7 regulation. Moreover, given the same NOx emission target, the gain achieved thanks to the implementation of an EHC predictive control function will allow to consider a simplified EATS layout, thus reducing the related manufacturing cost. The promising results achieved in terms of NOx emission reduction show the effectiveness of the application of a predictive control strategy focused on EATS thermal management and highlight the potential of a complete integration and parallel development of involved vehicle physical systems, control software and connectivity data management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The shallow water configuration of the gulf of Trieste allows the propagation of the stress due to wind and waves along the whole water column down to the bottom. When the stress overcomes a particular threshold it produces resuspension processes of the benthic detritus. The benthic sediments in the North Adriatic are rich of organic matter, transported here by many rivers. This biological active particulate, when remaining in the water, can be transported in all the Adriatic basin by the basin-wide circulation. In this work is presented a first implementation of a resuspension/deposition submodel in the oceanographic coupled physical-biogeochemical 1-dimensional numerical model POM-BFM. At first has been considered the only climatological wind stress forcing, next has been introduced, on the surface, an annual cycle of wave motion and finally have been imposed some exceptional wave event in different periods of the year. The results show a strong relationship between the efficiency of the resuspension process and the stratification of the water column. During summer the strong stratification can contained a great quantity of suspended matter near to the bottom, while during winter even a low concentration of particulate can reach the surface and remains into the water for several months without settling and influencing the biogeochemical system. Looking at the biologic effects, the organic particulate, injected in the water column, allow a sudden growth of the pelagic bacteria which competes with the phytoplankton for nutrients strongly inhibiting its growth. This happen especially during summer when the suspended benthic detritus concentration is greater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtain the exact time-dependent Kohn-Sham potentials Vks for 1D Hubbard chains, driven by a d.c. external field, using the time-dependent electron density and current density obtained from exact many-body time-evolution. The exact Vxc is compared to the adiabatically-exact Vad-xc and the “instantaneous ground state” Vigs-xc. The effectiveness of these two approximations is analyzed. Approximations for the exchange-correlation potential Vxc and its gradient, based on the local density and on the local current density, are also considered and both physical quantities are observed to be far outside the reach of any possible local approximation. Insight into the respective roles of ground-state and excited-state correlation in the time-dependent system, as reflected in the potentials, is provided by the pair correlation function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 1-D 1/2-spin XXZ model with staggered external magnetic field, when restricting to low field, can be mapped into the quantum sine-Gordon model through bosonization: this assures the presence of soliton, antisoliton and breather excitations in it. In particular, the action of the staggered field opens a gap so that these physical objects are stable against energetic fluctuations. In the present work, this model is studied both analytically and numerically. On the one hand, analytical calculations are made to solve exactly the model through Bethe ansatz: the solution for the XX + h staggered model is found first by means of Jordan-Wigner transformation and then through Bethe ansatz; after this stage, efforts are made to extend the latter approach to the XXZ + h staggered model (without finding its exact solution). On the other hand, the energies of the elementary soliton excitations are pinpointed through static DMRG (Density Matrix Renormalization Group) for different values of the parameters in the hamiltonian. Breathers are found to be in the antiferromagnetic region only, while solitons and antisolitons are present both in the ferromagnetic and antiferromagnetic region. Their single-site z-magnetization expectation values are also computed to see how they appear in real space, and time-dependent DMRG is employed to realize quenches on the hamiltonian parameters to monitor their time-evolution. The results obtained reveal the quantum nature of these objects and provide some information about their features. Further studies and a better understanding of their properties could bring to the realization of a two-level state through a soliton-antisoliton pair, in order to implement a qubit.