3 resultados para Permanent magnet motors
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In the past a change in temperature of 5°C most often occurred over intervals of thousands of years. According to estimates by the IPCC, in the XXI century is expected an increase in average temperatures in Europe between 1.8 and 4.0°C in the best case caused by emissions of carbon dioxide and other GHG from human activities. As well as on the environment and economic context, global warming will have effects even on road safety. Several studies have already shown how increasing temperature may cause a worsening of some types of road surface damages, especially rutting, a permanent deformation of the road structures consisting in the formation of a longitudinal depression in the wheelpath, mostly due to the rheological behavior of bitumen. This deformation evolves during the hot season because of the heating capacity of the asphalt layers, in fact, the road surface temperature is up to 24°C higher than air. In this thesis, through the use of Wheeltrack test, it was studied the behavior of some types of asphalt concrete mixtures subjected to fatigue testing at different temperatures. The objectives of this study are: to determine the strain variation of different bituminous mixture subjected to fatigue testing at different temperature conditions; to investigate the effect of aggregates, bitumen and mixtures’ characteristics on rutting. Samples were made in the laboratory mostly using an already prepared mixtures, the others preparing the asphalt concrete from the grading curve and bitumen content. The same procedure was performed for each specimen: preparation, compaction using the roller compactor, cooling and heating before the test. The tests were carried out at 40 - 50 - 60°C in order to obtain the evolution of deformation with temperature variation, except some mixtures for which the tests were carried out only at 50°C. In the elaboration of the results were considered testing parameters, component properties and the characteristics of the mixture. Among the testing parameters, temperature was varied for each sample. The mixtures responded to this variation with a different behavior (linear logarithmic and exponential) not directly correlated with the asphalt characteristics; the others parameters as load, passage frequency and test condition were kept constant. According to the results obtained, the main contribution to deformation is due to the type of binder used, it was found that the modified bitumen have a better response than the same mixtures containing traditional bitumen; to the porosity which affects negatively the behavior of the samples and to the homogeneity ceteris paribus. The granulometric composition did not seem to have interfered with the results. Overall has emerged at working temperature, a decisive importance of bitumen composition, than the other characteristics of the mixture, that tends to disappear with heating in favor of increased dependence of rutting resistance from the granulometric composition of the sample considered. In particular it is essential, rather than the mechanical characteristics of the binder, its chemical properties given by the polymeric modification. To confirm some considered results, the maximum bulk density and the air voids content were determined. Tests have been conducted in the laboratories of the Civil Engineering Department at NTNU in Trondheim according to European Standards.
13C NMR of a single molecule magnet: analysis of pseudocontact shifts and residual dipolar couplings
Resumo:
Paramagnetic triple decker complexes of lanthanides are promising Single Molecule Magnets (SMMs), with many potential uses. Some of them show preferable relaxation behavior, which enables the recording of well resolved NMR spectra. These axially symmetric complexes are also strongly magnetically anisotropic, and this property can be described with the axial component of the magnetic susceptibility tensor, χa. For triple decker complexes with phthalocyanine based ligands, the Fermi˗contact contribution is small. Hence, together with the axial symmetry, the experimental chemical shifts in 1H and 13C NMR spectra can be modeled easily by considering pseudocontact and orbital shifts alone. This results in the determination of the χa value, which is also responsible for molecular alignment and consequently for the observation of residual dipolar couplings (RDCs). A detailed analysis of the experimental 1H-13C and 1H-1H couplings revealed that contributions from RDCs (positive and negative) and from dynamic frequency shifts (negative for all observed couplings) have to be considered. Whilst the pseudocontact shifts depend on the average positions of 1H and 13C nuclei relative to the lanthanide ions, the RDCs are related to the mobility of nuclei they correspond to. This phenomenon allows for the measurement of the internal mobility of the various groups in the SMMs.
Resumo:
Questo studio concerne uno studio di fattibilità per l'applicazione dei "positive displacement motors" in ambienti ambienti fortemente critici, soggetti ad alta pressione e alta temperatura. Tali motori sono utilizzati nell'industria Oil & Gas per la perforazione di pozzi petroliferi. L’analisi è stata portata a termine attraverso definizione dell’intervallo di temperatura per cui le performance degli strumenti in commercio presenta il maggior numero di failures, compreso tra i 175°C e i 225°C , e per il quale si vuole riuscire a limitare i rischi connessi e le criticità associate, garantendo così il raggiungimento dei target con un maggior grado di affidabilità e disponibilità del PDM utilizzato. Analizzando le sollecitazioni agenti sul motore durante le fasi di utilizzo, è stato possibile rilevare le principali cause di rottura e malfunzionamento che, nella maggior parte dei casi, possono essere attribuite al rigonfiamento e alla degradazione del materiale elastomerico che costituisce lo statore della power section. Investigando in merito alle differenze e alle proprietà di resistenza di numerosi materiali elastomerici a diversi range di temperatura, sono stati evidenziati dei margini di ottimizzazione in particolare relativi alla potenziale riduzione e totale sostituzione della superficie elastomerica con materiale metallico. Ciò ha fatto si che fosse necessario un approfondimento sulle caratteristiche degli acciai e delle leghe metalliche, in termini di resistenza a corrosione, costo del materiale, resistenza meccanica e della capacità di mantenere elevate proprietà meccaniche con l’aumento della temperatura, al fine di individuare i migliori “candidati” per sostituire interamente il materiale elastomerico dello statore in materiale metallico e risolvere così il problema dell’applicazione dei PDM in ambienti HT-HP.