54 resultados para Non-formal learning

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nel lavoro di tesi qui presentato si indaga l'applicazione di tecniche di apprendimento mirate ad una più efficiente esecuzione di un portfolio di risolutore di vincoli (constraint solver). Un constraint solver è un programma che dato in input un problema di vincoli, elabora una soluzione mediante l'utilizzo di svariate tecniche. I problemi di vincoli sono altamente presenti nella vita reale. Esempi come l'organizzazione dei viaggi dei treni oppure la programmazione degli equipaggi di una compagnia aerea, sono tutti problemi di vincoli. Un problema di vincoli è formalizzato da un problema di soddisfacimento di vincoli(CSP). Un CSP è descritto da un insieme di variabili che possono assumere valori appartenenti ad uno specico dominio ed un insieme di vincoli che mettono in relazione variabili e valori assumibili da esse. Una tecnica per ottimizzare la risoluzione di tali problemi è quella suggerita da un approccio a portfolio. Tale tecnica, usata anche in am- biti come quelli economici, prevede la combinazione di più solver i quali assieme possono generare risultati migliori di un approccio a singolo solver. In questo lavoro ci preoccupiamo di creare una nuova tecnica che combina un portfolio di constraint solver con tecniche di machine learning. Il machine learning è un campo di intelligenza articiale che si pone l'obiettivo di immettere nelle macchine una sorta di `intelligenza'. Un esempio applicativo potrebbe essere quello di valutare i casi passati di un problema ed usarli in futuro per fare scelte. Tale processo è riscontrato anche a livello cognitivo umano. Nello specico, vogliamo ragionare in termini di classicazione. Una classicazione corrisponde ad assegnare ad un insieme di caratteristiche in input, un valore discreto in output, come vero o falso se una mail è classicata come spam o meno. La fase di apprendimento sarà svolta utilizzando una parte di CPHydra, un portfolio di constraint solver sviluppato presso la University College of Cork (UCC). Di tale algoritmo a portfolio verranno utilizzate solamente le caratteristiche usate per descrivere determinati aspetti di un CSP rispetto ad un altro; queste caratteristiche vengono altresì dette features. Creeremo quindi una serie di classicatori basati sullo specifico comportamento dei solver. La combinazione di tali classicatori con l'approccio a portfolio sara nalizzata allo scopo di valutare che le feature di CPHydra siano buone e che i classicatori basati su tali feature siano affidabili. Per giusticare il primo risultato, eettueremo un confronto con uno dei migliori portfolio allo stato dell'arte, SATzilla. Una volta stabilita la bontà delle features utilizzate per le classicazioni, andremo a risolvere i problemi simulando uno scheduler. Tali simulazioni testeranno diverse regole costruite con classicatori precedentemente introdotti. Prima agiremo su uno scenario ad un processore e successivamente ci espanderemo ad uno scenario multi processore. In questi esperimenti andremo a vericare che, le prestazioni ottenute tramite l'applicazione delle regole create appositamente sui classicatori, abbiano risultati migliori rispetto ad un'esecuzione limitata all'utilizzo del migliore solver del portfolio. I lavoro di tesi è stato svolto in collaborazione con il centro di ricerca 4C presso University College Cork. Su questo lavoro è stato elaborato e sottomesso un articolo scientico alla International Joint Conference of Articial Intelligence (IJCAI) 2011. Al momento della consegna della tesi non siamo ancora stati informati dell'accettazione di tale articolo. Comunque, le risposte dei revisori hanno indicato che tale metodo presentato risulta interessante.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human reasoning is a fascinating and complex cognitive process that can be applied in different research areas such as philosophy, psychology, laws and financial. Unfortunately, developing supporting software (to those different areas) able to cope such as complex reasoning it’s difficult and requires a suitable logic abstract formalism. In this thesis we aim to develop a program, that has the job to evaluate a theory (a set of rules) w.r.t. a Goal, and provide some results such as “The Goal is derivable from the KB5 (of the theory)”. In order to achieve this goal we need to analyse different logics and choose the one that best meets our needs. In logic, usually, we try to determine if a given conclusion is logically implied by a set of assumptions T (theory). However, when we deal with programming logic we need an efficient algorithm in order to find such implications. In this work we use a logic rather similar to human logic. Indeed, human reasoning requires an extension of the first order logic able to reach a conclusion depending on not definitely true6 premises belonging to a incomplete set of knowledge. Thus, we implemented a defeasible logic7 framework able to manipulate defeasible rules. Defeasible logic is a non-monotonic logic designed for efficient defeasible reasoning by Nute (see Chapter 2). Those kind of applications are useful in laws area especially if they offer an implementation of an argumentation framework that provides a formal modelling of game. Roughly speaking, let the theory is the set of laws, a keyclaim is the conclusion that one of the party wants to prove (and the other one wants to defeat) and adding dynamic assertion of rules, namely, facts putted forward by the parties, then, we can play an argumentative challenge between two players and decide if the conclusion is provable or not depending on the different strategies performed by the players. Implementing a game model requires one more meta-interpreter able to evaluate the defeasible logic framework; indeed, according to Göedel theorem (see on page 127), we cannot evaluate the meaning of a language using the tools provided by the language itself, but we need a meta-language able to manipulate the object language8. Thus, rather than a simple meta-interpreter, we propose a Meta-level containing different Meta-evaluators. The former has been explained above, the second one is needed to perform the game model, and the last one will be used to change game execution and tree derivation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I sistemi di raccomandazione per come li conosciamo nascono alla fine del XX secolo, e si sono evoluti fino ai giorni nostri approcciandosi a numerosi campi, tra i quali analizzeremo l’ingegneria del software, la medicina, la gestione delle reti aziendali e infine, come argomento focale della tesi, l’e-Learning. Dopo una rapida panoramica sullo stato dell’arte dei sistemi di raccomandazione al giorno d’oggi, discorrendo velocemente tra metodi puri e metodi ibridi ottenuti come combinazione dei primi, analizzeremo varie applicazioni pratiche per dare un’idea al lettore di quanto possano essere vari i settori di utilizzo di questi software. Tratteremo nello specifico il funzionamento di varie tecniche per la raccomandazione in ambito e-Learning, analizzando tutte le problematiche che distinguono questo settore da tutti gli altri. Nello specifico, dedicheremo un’intera sezione alla descrizione della psicologia dello studente, e su come capire il suo profilo cognitivo aiuti a suggerire al meglio la giusta risorsa da apprendere nel modo più corretto. È doveroso, infine, parlare di privacy: come vedremo nel primo capitolo, i sistemi di raccomandazione utilizzano al massimo dati sensibili degli utenti al fine di fornire un suggerimento il più accurato possibile. Ma come possiamo tutelarli contro intrusioni e quindi contro violazioni della privacy? L’obiettivo di questa tesi è quindi quello di presentare al meglio lo stato attuale dei sistemi di raccomandazione in ambito e-Learning e non solo, in modo da costituire un riferimento chiaro, semplice ma completo per chiunque si volesse affacciare a questo straordinario ed affascinante mondo della raccomandazione on line.  

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La tesi sviluppa un corso di ottica attraverso la piattaforma e-learning di Ateneo Moodle. L'obiettivo è la proposta di alcuni argomenti di Fisica attraverso una metodologia nuova implementata con tecnologie informatiche di recente sviluppo. La prospettiva è quella dell'adozione di questo modello per la costruzione di un corso di Fisica Generale. Le caratteristiche rilevanti di questo approccio multimediale nell'ambito degli insegnamenti scientifici sono l'interattività tra gli studenti ed il corso, non precludendo il confronto tra i partecipanti all'attività didattica e la modularità del servizio formativo. A tal fine sono state inserite nell'insegnamento diverse features Moodle per realizzare questa architettura didattica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EPUB rappresenta attualmente uno dei formati più usati per distribuire pubblicazioni digitali (ebook): è uno standard aperto e libero, i cui scenari d'uso variano dall'utilizzo interno, da parte di editori e aziende di conversione, alle distribuzione e vendita. EPUB è basato sui principali standard web, come HTML5 e CSS ed è progettato per strutturare e renderizzare contenuto reflowable, ottimizzando così la presentazione per il sistema di lettura usato. L'uso di specifiche conosciute e ancora in fase di definizione assicura un alto livello di attenzione e una comunità vivace, ma introduce anche un certo livello di incertezza sui futuri sviluppi. Uno degli aspetti centrali di EPUB è l'apertura totale verso pratiche che rendano il contenuto accessibile a persone con disabilità. Questa apertura è dovuta in parte all'uso degli standard web sopracitati, ma anche dalla consapevolezza che il contenuto accessibile rappresenta un valore aggiunto di notevole entità sia per i fruitori (anche non disabili) sia per gli editori e gli autori (in termini di mercato), creando un circolo virtuoso. Un altro aspetto interessante di EPUB è il suo possibile uso nell'ambito e-learning. È stata creata una specifica (più precisamente un profilo) deputata esclusivamente a questo scopo: EDUPUB. Tale specifica è tuttora in una fase iniziale, poichè ancora in draft, ma può comunque risultare di sicuro interesse per tutti i soggetti già coinvolti nello sviluppo e nell'uso di EPUB e di tecnologie relative all'apprendimento elettronico.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La tesi tratta in modo approfondito le tipologie di apprendimento non tradizionale, ovvero in contesto non scolastico/universitario, focalizzandosi sull'importanza che hanno i dispositivi mobili come mezzo di aggiornamento e miglioramento costante delle conoscenze e abilità delle persone. Queste nuove metodologie sono chiamate microlearning e mobile learning, evoluzioni naturali dell'e-learning nate dall'esigenza di un apprendimento che non fosse più solo a distanza, ma applicabile al contesto mobile per rispecchiare le nuove esigenze delle persone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questo lavoro è iniziato con uno studio teorico delle principali tecniche di classificazione di immagini note in letteratura, con particolare attenzione ai più diffusi modelli di rappresentazione dell’immagine, quali il modello Bag of Visual Words, e ai principali strumenti di Apprendimento Automatico (Machine Learning). In seguito si è focalizzata l’attenzione sulla analisi di ciò che costituisce lo stato dell’arte per la classificazione delle immagini, ovvero il Deep Learning. Per sperimentare i vantaggi dell’insieme di metodologie di Image Classification, si è fatto uso di Torch7, un framework di calcolo numerico, utilizzabile mediante il linguaggio di scripting Lua, open source, con ampio supporto alle metodologie allo stato dell’arte di Deep Learning. Tramite Torch7 è stata implementata la vera e propria classificazione di immagini poiché questo framework, grazie anche al lavoro di analisi portato avanti da alcuni miei colleghi in precedenza, è risultato essere molto efficace nel categorizzare oggetti in immagini. Le immagini su cui si sono basati i test sperimentali, appartengono a un dataset creato ad hoc per il sistema di visione 3D con la finalità di sperimentare il sistema per individui ipovedenti e non vedenti; in esso sono presenti alcuni tra i principali ostacoli che un ipovedente può incontrare nella propria quotidianità. In particolare il dataset si compone di potenziali ostacoli relativi a una ipotetica situazione di utilizzo all’aperto. Dopo avere stabilito dunque che Torch7 fosse il supporto da usare per la classificazione, l’attenzione si è concentrata sulla possibilità di sfruttare la Visione Stereo per aumentare l’accuratezza della classificazione stessa. Infatti, le immagini appartenenti al dataset sopra citato sono state acquisite mediante una Stereo Camera con elaborazione su FPGA sviluppata dal gruppo di ricerca presso il quale è stato svolto questo lavoro. Ciò ha permesso di utilizzare informazioni di tipo 3D, quali il livello di depth (profondità) di ogni oggetto appartenente all’immagine, per segmentare, attraverso un algoritmo realizzato in C++, gli oggetti di interesse, escludendo il resto della scena. L’ultima fase del lavoro è stata quella di testare Torch7 sul dataset di immagini, preventivamente segmentate attraverso l’algoritmo di segmentazione appena delineato, al fine di eseguire il riconoscimento della tipologia di ostacolo individuato dal sistema.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nella tesi è analizzata nel dettaglio una proposta didattica sulla Fisica Quantistica elaborata dal gruppo di ricerca in Didattica della Fisica dell’Università di Bologna, in collaborazione con il gruppo di ricerca in Fisica Teorica e con ricercatori del CNR di Bologna. La proposta è stata sperimentata in diverse classi V di Liceo scientifico e dalle sperimentazioni sono emersi casi significativi di studenti che non sono riusciti ad accettare la teoria quantistica come descrizione convincente ad affidabile della realtà fisica (casi di non accettazione), nonostante sembrassero aver capito la maggior parte degli argomenti e essersi ‘appropriati’ del percorso per come gli era stato proposto. Da questa evidenza sono state formulate due domande di ricerca: (1) qual è la natura di questa non accettazione? Rispecchia una presa di posizione epistemologica o è espressione di una mancanza di comprensione profonda? (2) Nel secondo caso, è possibile individuare precisi meccanismi cognitivi che possono ostacolare o facilitare l’accettazione della fisica quantistica? L’analisi di interviste individuali degli studenti ha permesso di mettere in luce tre principali esigenze cognitive (cognitive needs) che sembrano essere coinvolte nell’accettazione e nell’apprendimento della fisica quantistica: le esigenze di visualizzabilità, comparabilità e di ‘realtà’. I ‘cognitive needs’ sono stati quindi utilizzati come strumenti di analisi delle diverse proposte didattiche in letteratura e del percorso di Bologna, al fine di metterne in luce le criticità. Sono state infine avanzate alcune proposte per un suo miglioramento.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questo lavoro di tesi riguarda lo studio e l’implementazione di un algoritmo di multiple kernel learning (MKL) per la classificazione e la regressione di dati di neuroimaging ed, in particolare, di grafi di connettività funzionale. Gli algoritmi di MKL impiegano una somma pesata di vari kernel (ovvero misure di similarità) e permettono di selezionare le features utili alla discriminazione delle istanze durante l’addestramento del classificatore/regressore stesso. L’aspetto innovativo introdotto in questa tesi è stato lo studio di un nuovo kernel tra grafi di connettività funzionale, con la particolare caratteristica di conservare l’informazione relativa all’importanza di ogni singola region of interest (ROI) ed impiegando la norma lp come metodo per l’aggiornamento dei pesi, al fine di ottenere soluzioni sparsificate. L’algoritmo è stato validato utilizzando mappe di connettività sintetiche ed è stato applicato ad un dataset formato da 32 pazienti affetti da deterioramento cognitivo lieve e malattia dei piccoli vasi, di cui 16 sottoposti a riabilitazione cognitiva tra un’esame di risonanza ma- gnetica funzionale di baseline e uno di follow-up. Le mappe di con- nettività sono state ottenute con il toolbox CONN. Il classificatore è riuscito a discriminare i due gruppi di pazienti in una configurazione leave-one-out annidata con un’accuratezza dell’87.5%. Questo lavoro di tesi è stato svolto durante un periodo di ricerca presso la School of Computer Science and Electronic Engineering dell’University of Essex (Colchester, UK).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al giorno d'oggi il reinforcement learning ha dimostrato di essere davvero molto efficace nel machine learning in svariati campi, come ad esempio i giochi, il riconoscimento vocale e molti altri. Perciò, abbiamo deciso di applicare il reinforcement learning ai problemi di allocazione, in quanto sono un campo di ricerca non ancora studiato con questa tecnica e perchè questi problemi racchiudono nella loro formulazione un vasto insieme di sotto-problemi con simili caratteristiche, per cui una soluzione per uno di essi si estende ad ognuno di questi sotto-problemi. In questo progetto abbiamo realizzato un applicativo chiamato Service Broker, il quale, attraverso il reinforcement learning, apprende come distribuire l'esecuzione di tasks su dei lavoratori asincroni e distribuiti. L'analogia è quella di un cloud data center, il quale possiede delle risorse interne - possibilmente distribuite nella server farm -, riceve dei tasks dai suoi clienti e li esegue su queste risorse. L'obiettivo dell'applicativo, e quindi del data center, è quello di allocare questi tasks in maniera da minimizzare il costo di esecuzione. Inoltre, al fine di testare gli agenti del reinforcement learning sviluppati è stato creato un environment, un simulatore, che permettesse di concentrarsi nello sviluppo dei componenti necessari agli agenti, invece che doversi anche occupare di eventuali aspetti implementativi necessari in un vero data center, come ad esempio la comunicazione con i vari nodi e i tempi di latenza di quest'ultima. I risultati ottenuti hanno dunque confermato la teoria studiata, riuscendo a ottenere prestazioni migliori di alcuni dei metodi classici per il task allocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reinforcement learning is a particular paradigm of machine learning that, recently, has proved times and times again to be a very effective and powerful approach. On the other hand, cryptography usually takes the opposite direction. While machine learning aims at analyzing data, cryptography aims at maintaining its privacy by hiding such data. However, the two techniques can be jointly used to create privacy preserving models, able to make inferences on the data without leaking sensitive information. Despite the numerous amount of studies performed on machine learning and cryptography, reinforcement learning in particular has never been applied to such cases before. Being able to successfully make use of reinforcement learning in an encrypted scenario would allow us to create an agent that efficiently controls a system without providing it with full knowledge of the environment it is operating in, leading the way to many possible use cases. Therefore, we have decided to apply the reinforcement learning paradigm to encrypted data. In this project we have applied one of the most well-known reinforcement learning algorithms, called Deep Q-Learning, to simple simulated environments and studied how the encryption affects the training performance of the agent, in order to see if it is still able to learn how to behave even when the input data is no longer readable by humans. The results of this work highlight that the agent is still able to learn with no issues whatsoever in small state spaces with non-secure encryptions, like AES in ECB mode. For fixed environments, it is also able to reach a suboptimal solution even in the presence of secure modes, like AES in CBC mode, showing a significant improvement with respect to a random agent; however, its ability to generalize in stochastic environments or big state spaces suffers greatly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’Intelligenza Artificiale è un campo dell’informatica che da tempo si afferma come valido strumento alternativo per la risoluzione di problemi tipicamente riservati esclusivamente all’intelletto umano. Se in principio gli algoritmi sfruttati nel campo dell’Intelligenza Artificiale erano basati su insiemi di regole codificate da esperti del dominio di applicazione dell’algoritmo, con l’arrivo del secondo millennio questo approccio è stato superato in favore di algoritmi che sfruttano grandi quantità di dati ed elevata potenza di calcolo per fare scelte ottimali. Un esempio di questo approccio può essere Deep Blue, che nel 1996, anche grazie ad un database di 4mila aperture e un’architettura che permetteva 11 GFLOPS fu la prima macchina a vincere una partita a scacchi contro un grande maestro. Col passare degli anni, l’aumentare degli investimenti e della ricerca, questo approccio ha portato alla strutturazione del campo dell’Apprendimento Automatico (Machine Learning, in inglese) dal quale sono scaturiti numerosi avanzamenti che hanno influenzato una moltitudine di ambiti: dall’agricoltura di precisione alla traduzione automatica, dal riconoscimento di frodi con carte di credito alla farmaceutica, dal marketing alla visione artificiale e molti altri, inclusa la medicina. Questo lavoro si concentra su proprio questioni relative al campo della medicina. In particolare si occupa di provare a riconoscere se le stenosi coronariche di un paziente sono gravi o meno attraverso l’uso di angiografie coronariche invasive e tomografie coronariche angiografiche; in maniera da diminuire delle angiografie coronariche invasive effettuate su pazienti che non ne hanno davvero bisogno.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors is essential in performing localization. This makes the time of arrival (ToA) an important piece of information to retrieve from the AE signal. Generally, this is determined using statistical methods such as the Akaike Information Criterion (AIC) which is particularly prone to errors in the presence of noise. And given that the structures of interest are surrounded with harsh environments, a way to accurately estimate the arrival time in such noisy scenarios is of particular interest. In this work, two new methods are presented to estimate the arrival times of AE signals which are based on Machine Learning. Inspired by great results in the field, two models are presented which are Deep Learning models - a subset of machine learning. They are based on Convolutional Neural Network (CNN) and Capsule Neural Network (CapsNet). The primary advantage of such models is that they do not require the user to pre-define selected features but only require raw data to be given and the models establish non-linear relationships between the inputs and outputs. The performance of the models is evaluated using AE signals generated by a custom ray-tracing algorithm by propagating them on an aluminium plate and compared to AIC. It was found that the relative error in estimation on the test set was < 5% for the models compared to around 45% of AIC. The testing process was further continued by preparing an experimental setup and acquiring real AE signals to test on. Similar performances were observed where the two models not only outperform AIC by more than a magnitude in their average errors but also they were shown to be a lot more robust as compared to AIC which fails in the presence of noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissertation starts by providing a description of the phenomena related to the increasing importance recently acquired by satellite applications. The spread of such technology comes with implications, such as an increase in maintenance cost, from which derives the interest in developing advanced techniques that favor an augmented autonomy of spacecrafts in health monitoring. Machine learning techniques are widely employed to lay a foundation for effective systems specialized in fault detection by examining telemetry data. Telemetry consists of a considerable amount of information; therefore, the adopted algorithms must be able to handle multivariate data while facing the limitations imposed by on-board hardware features. In the framework of outlier detection, the dissertation addresses the topic of unsupervised machine learning methods. In the unsupervised scenario, lack of prior knowledge of the data behavior is assumed. In the specific, two models are brought to attention, namely Local Outlier Factor and One-Class Support Vector Machines. Their performances are compared in terms of both the achieved prediction accuracy and the equivalent computational cost. Both models are trained and tested upon the same sets of time series data in a variety of settings, finalized at gaining insights on the effect of the increase in dimensionality. The obtained results allow to claim that both models, combined with a proper tuning of their characteristic parameters, successfully comply with the role of outlier detectors in multivariate time series data. Nevertheless, under this specific context, Local Outlier Factor results to be outperforming One-Class SVM, in that it proves to be more stable over a wider range of input parameter values. This property is especially valuable in unsupervised learning since it suggests that the model is keen to adapting to unforeseen patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'estrazione automatica degli eventi biomedici dalla letteratura scientifica ha catturato un forte interesse nel corso degli ultimi anni, dimostrandosi in grado di riconoscere interazioni complesse e semanticamente ricche espresse all'interno del testo. Purtroppo però, esistono davvero pochi lavori focalizzati sull'apprendimento di embedding o di metriche di similarità per i grafi evento. Questa lacuna lascia le relazioni biologiche scollegate, impedendo l'applicazione di tecniche di machine learning che potrebbero dare un importante contributo al progresso scientifico. Approfittando dei vantaggi delle recenti soluzioni di deep graph kernel e dei language model preaddestrati, proponiamo Deep Divergence Event Graph Kernels (DDEGK), un metodo non supervisionato e induttivo in grado di mappare gli eventi all'interno di uno spazio vettoriale, preservando le loro similarità semantiche e strutturali. Diversamente da molti altri sistemi, DDEGK lavora a livello di grafo e non richiede nè etichette e feature specifiche per un determinato task, nè corrispondenze note tra i nodi. A questo scopo, la nostra soluzione mette a confronto gli eventi con un piccolo gruppo di eventi prototipo, addestra delle reti di cross-graph attention per andare a individuare i legami di similarità tra le coppie di nodi (rafforzando l'interpretabilità), e impiega dei modelli basati su transformer per la codifica degli attributi continui. Sono stati fatti ampi esperimenti su dieci dataset biomedici. Mostriamo che le nostre rappresentazioni possono essere utilizzate in modo efficace in task quali la classificazione di grafi, clustering e visualizzazione e che, allo stesso tempo, sono in grado di semplificare il task di semantic textual similarity. Risultati empirici dimostrano che DDEGK supera significativamente gli altri modelli che attualmente detengono lo stato dell'arte.