4 resultados para Mussle Memory
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Con il presente studio si è inteso analizzare l’impatto dell’utilizzo di una memoria di traduzione (TM) e del post-editing (PE) di un output grezzo sul livello di difficoltà percepita e sul tempo necessario per ottenere un testo finale di alta qualità. L’esperimento ha coinvolto sei studenti, di madrelingua italiana, del corso di Laurea Magistrale in Traduzione Specializzata dell’Università di Bologna (Vicepresidenza di Forlì). I partecipanti sono stati divisi in tre coppie, a ognuna delle quali è stato assegnato un estratto di comunicato stampa in inglese. Per ogni coppia, ad un partecipante è stato chiesto di tradurre il testo in italiano usando la TM all’interno di SDL Trados Studio 2011. All’altro partecipante è stato chiesto di fare il PE completo in italiano dell’output grezzo ottenuto da Google Translate. Nei casi in cui la TM o l’output non contenevano traduzioni (corrette), i partecipanti avrebbero potuto consultare Internet. Ricorrendo ai Think-aloud Protocols (TAPs), è stato chiesto loro di riflettere a voce alta durante lo svolgimento dei compiti. È stato quindi possibile individuare i problemi traduttivi incontrati e i casi in cui la TM e l’output grezzo hanno fornito soluzioni corrette; inoltre, è stato possibile osservare le strategie traduttive impiegate, per poi chiedere ai partecipanti di indicarne la difficoltà attraverso interviste a posteriori. È stato anche misurato il tempo impiegato da ogni partecipante. I dati sulla difficoltà percepita e quelli sul tempo impiegato sono stati messi in relazione con il numero di soluzioni corrette rispettivamente fornito da TM e output grezzo. È stato osservato che usare la TM ha comportato un maggior risparmio di tempo e che, al contrario del PE, ha portato a una riduzione della difficoltà percepita. Il presente studio si propone di aiutare i futuri traduttori professionisti a scegliere strumenti tecnologici che gli permettano di risparmiare tempo e risorse.
Resumo:
In questa tesi sono stati apportati due importanti contributi nel campo degli acceleratori embedded many-core. Abbiamo implementato un runtime OpenMP ottimizzato per la gestione del tasking model per sistemi a processori strettamente accoppiati in cluster e poi interconnessi attraverso una network on chip. Ci siamo focalizzati sulla loro scalabilità e sul supporto di task di granularità fine, come è tipico nelle applicazioni embedded. Il secondo contributo di questa tesi è stata proporre una estensione del runtime di OpenMP che cerca di prevedere la manifestazione di errori dati da fenomeni di variability tramite una schedulazione efficiente del carico di lavoro.
Resumo:
Following the internationalization of contemporary higher education, academic institutions based in non-English speaking countries are increasingly urged to produce contents in English to address international prospective students and personnel, as well as to increase their attractiveness. The demand for English translations in the institutional academic domain is consequently increasing at a rate exceeding the capacity of the translation profession. Resources for assisting non-native authors and translators in the production of appropriate texts in L2 are therefore required in order to help academic institutions and professionals streamline their translation workload. Some of these resources include: (i) parallel corpora to train machine translation systems and multilingual authoring tools; and (ii) translation memories for computer-aided tools. The purpose of this study is to create and evaluate reference resources like the ones mentioned in (i) and (ii) through the automatic sentence alignment of a large set of Italian and English as a Lingua Franca (ELF) institutional academic texts given as equivalent but not necessarily parallel (i.e. translated). In this framework, a set of aligning algorithms and alignment tools is examined in order to identify the most profitable one(s) in terms of accuracy and time- and cost-effectiveness. In order to determine the text pairs to align, a sample is selected according to document length similarity (characters) and subsequently evaluated in terms of extent of noisiness/parallelism, alignment accuracy and content leverageability. The results of these analyses serve as the basis for the creation of an aligned bilingual corpus of academic course descriptions, which is eventually used to create a translation memory in TMX format.