5 resultados para Modeling Geomorphological Processes
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Nella protezione idraulica del territorio la previsione e il controllo delle piene sono di fondamentale importanza. I territori sono sempre più antropizzati, pertanto la riduzione dei rischi connessi a eventi idrometeorologici estremi è di notevole interesse. La previsione delle piene è resa difficile dall’innumerevole quantità di variabili che intervengono nel processo della loro formazione. Nelle attività di progettazione e nella verifica di opere idrauliche la identificazione dell’idrogramma di progetto spesso riveste un’importanza fondamentale. Un idrogramma di progetto è definito come un’onda di piena, realmente osservata o sintetica, associata ad un determinato livello di rischio, quantificato usualmente in termini di tempo di ritorno. Con il presente lavoro si cerca di verificare la possibilità di applicazione una metodologia per la stima degli idrogrammi di progetto associati ad un determinato tempo di ritorno, recentemente proposta dalla letteratura scientifica (Maione et al., 2001, Una metodologia per la stima indiretta degli idrogrammi sintetici per il progetto di opere di difesa idraulica del territorio). Il lavoro è riferito al Fiume Secchia, un affluente importante del Po che scorre tra le provincie di Modena e Reggio Emilia.
Resumo:
Al fine di migliorare le tecniche di coltura cellulare in vitro, sistemi a bioreattore sono sempre maggiormente utilizzati, e.g. ingegnerizzazione del tessuto osseo. Spinner Flasks, bioreattori rotanti e sistemi a perfusione di flusso sono oggi utilizzati e ogni sistema ha vantaggi e svantaggi. Questo lavoro descrive lo sviluppo di un semplice bioreattore a perfusione ed i risultati della metodologia di valutazione impiegata, basata su analisi μCT a raggi-X e tecniche di modellizzazione 3D. Un semplice bioreattore con generatore di flusso ad elica è stato progettato e costruito con l'obiettivo di migliorare la differenziazione di cellule staminali mesenchimali, provenienti da embrioni umani (HES-MP); le cellule sono state seminate su scaffold porosi di titanio che garantiscono una migliore adesione della matrice mineralizzata. Attraverso un microcontrollore e un'interfaccia grafica, il bioreattore genera tre tipi di flusso: in avanti (senso orario), indietro (senso antiorario) e una modalità a impulsi (avanti e indietro). Un semplice modello è stato realizzato per stimare la pressione generata dal flusso negli scaffolds (3•10-2 Pa). Sono stati comparati tre scaffolds in coltura statica e tre all’interno del bioreattore. Questi sono stati incubati per 21 giorni, fissati in paraformaldehyde (4% w/v) e sono stati soggetti ad acquisizione attraverso μCT a raggi-X. Le immagini ottenute sono state poi elaborate mediante un software di imaging 3D; è stato effettuato un sezionamento “virtuale” degli scaffolds, al fine di ottenere la distribuzione del gradiente dei valori di grigio di campioni estratti dalla superficie e dall’interno di essi. Tale distribuzione serve per distinguere le varie componenti presenti nelle immagini; in questo caso gli scaffolds dall’ipotetica matrice cellulare. I risultati mostrano che sia sulla superficie che internamente agli scaffolds, mantenuti nel bioreattore, è presente una maggiore densità dei gradienti dei valori di grigio ciò suggerisce un migliore deposito della matrice mineralizzata. Gli insegnamenti provenienti dalla realizzazione di questo bioreattore saranno utilizzati per progettare una nuova versione che renderà possibile l’analisi di più di 20 scaffolds contemporaneamente, permettendo un’ulteriore analisi della qualità della differenziazione usando metodologie molecolari ed istochimiche.
Resumo:
Microalgae cultures are attracting great attentions in many industrial applications. However, one of the technical challenges is to cut down the capital and operational costs of microalgae production systems, with special difficulty in reactor design and scale-up. The thesis work open with an overview on the microalgae cultures as a possible answer to solve some of the upcoming planet issues and their applications in several fields. After the work offers a general outline on the state of the art of microalgae culture systems, taking a special look to the enclosed photobioreactors (PBRs). The overall objective of this study is to advance the knowledge of PBRs design and lead to innovative large scale processes of microalgae cultivation. An airlift flat panel photobioreactor was designed, modeled and experimentally characterized. The gas holdup, liquid flow velocity and oxygen mass transfer of the reactor were experimentally determined and mathematically modeled, and the performance of the reactor was tested by cultivation of microalgae. The model predicted data correlated well with experimental data, and the high concentration of suspension cell culture could be achieved with controlled conditions. The reactor was inoculated with the algal strain Scenedesmus obliquus sp. first and with Chlorella sp. later and sparged with air. The reactor was operated in batch mode and daily monitored for pH, temperature, and biomass concentration and activity. The productivity of the novel device was determined, suggesting the proposed design can be effectively and economically used in carbon dioxide mitigation technologies and in the production of algal biomass for biofuel and other bioproducts. Those research results favored the possibility of scaling the reactor up into industrial scales based on the models employed, and the potential advantages and disadvantages were discussed for this novel industrial design.
Resumo:
The present thesis work proposes a new physical equivalent circuit model for a recently proposed semiconductor transistor, a 2-drain MSET (Multiple State Electrostatically Formed Nanowire Transistor). It presents a new software-based experimental setup that has been developed for carrying out numerical simulations on the device and on equivalent circuits. As of 2015, we have already approached the scaling limits of the ubiquitous CMOS technology that has been in the forefront of mainstream technological advancement, so many researchers are exploring different ideas in the realm of electrical devices for logical applications, among them MSET transistors. The idea that underlies MSETs is that a single multiple-terminal device could replace many traditional transistors. In particular a 2-drain MSET is akin to a silicon multiplexer, consisting in a Junction FET with independent gates, but with a split drain, so that a voltage-controlled conductive path can connect either of the drains to the source. The first chapter of this work presents the theory of classical JFETs and its common equivalent circuit models. The physical model and its derivation are presented, the current state of equivalent circuits for the JFET is discussed. A physical model of a JFET with two independent gates has been developed, deriving it from previous results, and is presented at the end of the chapter. A review of the characteristics of MSET device is shown in chapter 2. In this chapter, the proposed physical model and its formulation are presented. A listing for the SPICE model was attached as an appendix at the end of this document. Chapter 3 concerns the results of the numerical simulations on the device. At first the research for a suitable geometry is discussed and then comparisons between results from finite-elements simulations and equivalent circuit runs are made. Where points of challenging divergence were found between the two numerical results, the relevant physical processes are discussed. In the fourth chapter the experimental setup is discussed. The GUI-based environments that allow to explore the four-dimensional solution space and to analyze the physical variables inside the device are described. It is shown how this software project has been structured to overcome technical challenges in structuring multiple simulations in sequence, and to provide for a flexible platform for future research in the field.
Resumo:
One of the biggest challenges that contaminant hydrogeology is facing, is how to adequately address the uncertainty associated with model predictions. Uncertainty arise from multiple sources, such as: interpretative error, calibration accuracy, parameter sensitivity and variability. This critical issue needs to be properly addressed in order to support environmental decision-making processes. In this study, we perform Global Sensitivity Analysis (GSA) on a contaminant transport model for the assessment of hydrocarbon concentration in groundwater. We provide a quantification of the environmental impact and, given the incomplete knowledge of hydrogeological parameters, we evaluate which are the most influential, requiring greater accuracy in the calibration process. Parameters are treated as random variables and a variance-based GSA is performed in a optimized numerical Monte Carlo framework. The Sobol indices are adopted as sensitivity measures and they are computed by employing meta-models to characterize the migration process, while reducing the computational cost of the analysis. The proposed methodology allows us to: extend the number of Monte Carlo iterations, identify the influence of uncertain parameters and lead to considerable saving computational time obtaining an acceptable accuracy.