386 resultados para Materiali compositi carbonio chopped provini SMC trazione
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
I materiali compositi più diffusi sono quelli a matrice polimerica (PMC, Polymer Matrix Composites) con fibre di rinforzo, largamente utilizzati per la loro capacità di conciliare ottima resistenza meccanica con elevata leggerezza. Nel presente elaborato di tesi sono state studiate le caratteristiche meccaniche di materiali compositi a matrice resinosa, epossidica, rinforzati con fibre di carbonio chopped, ovvero fibre spezzate e disposte in modo del tutto casuale all’interno della matrice, mediante analisi microstrutturale e prove di trazione. Viene descritto il processo di produzione delle piastre di materiale composito ottenuto per SMC (Sheet Moulding Compound) da cui sono stati ricavati i provini. Lo studio a livello microstrutturale è stato possibile grazie all’inglobamento nella resina di alcune sezioni dei provini, le cui superfici sono state esaminate al microscopio acquisendo una quantità di immagini tale da permettere la ricostruzione della superficie stessa tramite software ed il calcolo percentuale delle porosità tramite SolidWorks. La caratterizzazione meccanica è stata eseguita utilizzando la macchina per le prove di trazione presente nell’hangar della sede di Forlì della Scuola di Ingegneria e Architettura dell’Università di Bologna: la preparazione dei provini è basata sull’applicazione di tabs di alluminio. I provini in materiale composito sono stati forniti in quattro differenti tipologie riguardanti la pressione a cui sono stati prodotti: 25, 50, 100 e 150 bar. Lo scopo dell’elaborato è stabilire la pressione ottimale di produzione dei provini, a cui il materiale composito mostra le migliori proprietà meccaniche, in particolare la più alta resistenza a carico di trazione. Le prove sono state condotte su provini a tre diverse lunghezze, per diversificare le modalità di stress meccanico. I risultati sono stati poi analizzati per stabilire quale valore di pressione di processo conferisce le migliori caratteristiche meccaniche al materiale.
Resumo:
L’utilizzo degli FRP (Fiber Reinforced Polymer) nel campo dell’ingegneria civile riguarda essenzialmente il settore del restauro delle strutture degradate o danneggiate e quello dell’adeguamento statico delle strutture edificate in zona sismica; in questi settori è evidente la difficoltà operativa alla quale si va in contro se si volessero utilizzare tecniche di intervento che sfruttano materiali tradizionali. I motivi per cui è opportuno intervenire con sistemi compositi fibrosi sono: • l’estrema leggerezza del rinforzo, da cui ne deriva un incremento pressoché nullo delle masse sismiche ed allo stesso tempo un considerevole aumento della duttilità strutturale; • messa in opera senza l’ausilio di particolari attrezzature da un numero limitato di operatori, da cui un minore costo della mano d’opera; • posizionamento in tempi brevi e spesso senza interrompere l’esercizio della struttura. Il parametro principale che definisce le caratteristiche di un rinforzo fibroso non è la resistenza a trazione, che risulta essere ben al di sopra dei tassi di lavoro cui sono soggette le fibre, bensì il modulo elastico, di fatti, più tale valore è elevato maggiore sarà il contributo irrigidente che il rinforzo potrà fornire all’elemento strutturale sul quale è applicato. Generalmente per il rinforzo di strutture in c.a. si preferiscono fibre sia con resistenza a trazione medio-alta (>2000 MPa) che con modulo elastico medio-alto (E=170-250 GPa), mentre per il recupero degli edifici in muratura o con struttura in legno si scelgono fibre con modulo di elasticità più basso (E≤80 GPa) tipo quelle aramidiche che meglio si accordano con la rigidezza propria del supporto rinforzato. In questo contesto, ormai ampliamente ben disposto nei confronti dei compositi, si affacciano ora nuove generazioni di rinforzi. A gli ormai “classici” FRP, realizzati con fibre di carbonio o fibre di vetro accoppiate a matrici organiche (resine epossidiche), si affiancano gli FRCM (Fiber Reinforced Cementitious Matrix), i TRM (Textile Reinforced Mortars) e gli SRG (Steel Reinforced Grout) che sfruttano sia le eccezionali proprietà di fibre di nuova concezione come quelle in PBO (Poliparafenilenbenzobisoxazolo), sia un materiale come l’acciaio, che, per quanto comune nel campo dell’edilizia, viene caratterizzato da lavorazioni innovative che ne migliorano le prestazioni meccaniche. Tutte queste nuove tipologie di compositi, nonostante siano state annoverate con nomenclature così differenti, sono però accomunate dell’elemento che ne permette il funzionamento e l’adesione al supporto: la matrice cementizia
Resumo:
Sviluppo di uno studio numerico, tramite metodo agli elementi finiti (FEM), sull'effetto di bordo in giunti incollati a sovrapposizione semplice (unsupported single-lap joints). E’ stata implementata l’analisi numerica di provini standard da normativa relativa a test sperimentali, per giunzioni tra lamine metalliche e tra materiali compositi in fibre di carbonio/matrice epossidica (CFRP). E’ stato cercata la geometria del bordo dello strato adesivo che potrebbe garantire una maggiore resistenza del giunto.
Resumo:
L'obiettivo della tesi è diradare, almeno parzialmente, le incertezze che potrebbero essere presenti nella caratterizzazione a compressione di materiali compositi. Per quanto concerne la compressione, in un primo momento, non essendo ritenuta una caratteristica troppo rilevante, si considerava che il materiale composito avesse proprietà equivalenti a quelle in trazione. Solo successivamente, dai primi anni ’70, si sono iniziate ad indagare in modo approfondito e mirato le proprietà meccaniche a compressione di tali materiali. Si sono sviluppati e normati nel tempo vari metodi che vengono classificati in base al modo di applicazione del carico sul provino. Ci si è quindi proposti, basandosi anche sulle richieste mosse dalla Scuderia Toro Rosso di Faenza, di determinare, dopo aver analizzato tutti i vantaggi e gli svantaggi di ciascuna metodologia, quella migliore a cui attenersi per tutte le prove di compressione che seguiranno. A tale scopo, dopo una attenta e approfondita analisi dei vari metodi di prova, si è scelto di utilizzare il Combined Loading Compression (CLC) Test Fixture: attrezzatura leggera e molto compatta, che dimostra una affidabilità dei risultati superiore alle altre tecnologie. Si è, inoltre, deciso di testare laminati non unidirezionali, evitando così molte problematiche quali, ad esempio, quelle dovute all’utilizzo di tabs o al possibile insorgere di microbuckling delle fibre. Si è risaliti, poi, al valore di resistenza a compressione della lamina unidirezionale attraverso il metodo di calcolo indiretto del Back-Out Factor (BF). Di tale metodo si sono indagate le basi teoriche, a partire dalla teoria classica dei laminati, e si sono ricavate le formule necessarie per l'applicazione pratica sperimentale. Per quanto riguarda la campagna sperimentale, svolta presso i laboratori ENEA di Faenza – Unità Tecnica Tecnologie dei Materiali Faenza (UTTMATF), sono stati realizzati 6 laminati di materiale composito, ognuno con differente sequenza di laminazione e percentuale di fibre nelle diverse direzioni. Due laminati sono stati ottenuti impilando lamine unidirezionali preimpregnate, in modo da ottenere una configurazione cross-ply (0°\90°), due in configurazione angle-ply (0°\90°\±45°) e due materiali unidirezionali (0° e 90°). Da questi 6 laminati sono stati ricavati 12/13 provini ciascuno. I provini cross-ply e angle-ply sono stati testati per ricavarne la resistenza a compressione, da cui, poi, risalire a quella della lamina unidirezionale a 0° mediante il BF. Dal confronto dei risultati ottenuti attraverso l'applicazione combinata di CLC e Back-Out Factor, con i dati riportati nel datasheet ufficiale, si è avuta conferma dell'affidabilità della metodologia scelta. Per quanto concerne l'elaborazione dei dati ricavati dalle prove sperimentali, è stato utilizzato un opportuno programma realizzato con il software Matlab. Con l'estensione GUI, poi, è stata creata un'interfaccia grafica per agevolare la comprensione delle fasi di elaborazione anche ad un utente non esperto.
Resumo:
Attività sperimentale riguardante lo studio dei materiali compositi, nell’ambito della progettazione a crashworthiness, svolto, tramite test dei provini realizzati nell’attività di tirocinio, presso i laboratori didattici della Scuola di ingegneria e architettura, sede di Forlì. Il lavoro di tesi, si è basato sulla valutazione dell’energia assorbita dai provini in materiale composito, tramite prove quasi-statiche; per questo tipo di prove sono stati utilizzati provini autostabilizzanti, rinforzati in fibra di carbonio e matrice in resina epossidica. Prima di procedere alla sperimentazione, sono stati studiati i risultati ottenuti da precedenti sperimentazioni eseguite da colleghi, per valutare quale fosse la configurazione migliore di provino, in termini di geometria, e trigger, che garantisse elevate energie di assorbimento. Dopo una panoramica dei materiali compositi, con riferimento alle caratteristiche e proprietà, alle diverse tipologie che si possono avere in ambito industriale, è spiegato il concetto di crashworthiness, le varie tipologie di test di impatto e le varie tipologie di rottura alla quale può essere soggetto un provino. Si è di seguito descritto come è stata valutata la scelta del tipo di geometria e del trigger, che sarebbero stati utilizzati per la progettazione del provino, e si è accennato al processo di laminazione svolta presso i laboratori della Scuola per la fabbricazione del provino. Al termine della descrizione dei tester usati per la sperimentazione sono, infine, illustrati i risultati delle prove svolte, con successivi commenti.
Resumo:
Lo scopo di questa tesi è valutare la resistenza a compressione e il valore del modulo elastico di tre laminati ottenuti con lo stesso materiale composito, CFRP, distinti in fase di laminazione dall’utilizzo di tre diverse tipologie di distaccante (peel-ply, film distaccante e controstampo). In questo modo è stato possibile valutare come quest’ultimi abbiano influito, in modo diverso per ogni laminato, sull’omogeneità dello spessore, sul peso, sulla fuoriuscita di resina e sulla percentuale volumetrica delle fibre. Tali fattori a loro volta hanno caratterizzato i valori di resistenza a compressione e modulo elastico. Nei capitoli successivi è descritto un metodo di analisi a compressione dei materiali compositi, a matrice epossidica rinforzata con fibre di carbonio (CFRP), denominato Combined Loading Compression (CLC) Test Method, basato sull’applicazione, combinata, del carico sul campione, a taglio e all’estremità. La realizzazione dei provini è stata effettuata presso i laboratori dell’università: sono stati realizzati 3 laminati, per ognuno dei quali si è scelto di utilizzare su ogni pezzo una diversa tipologia di distaccante: controstampo, film distaccante e peel-ply, allo scopo di valutare quanta resina uscirà dal manufatto una volta in autoclave e quanta variazione di spessore avremo. Da ognuno di questi laminati sono stati ricavati 5 provini. La campagna sperimentale è stata condotta presso il Laboratorio Tecnologie dei Materiali Faenza (TEMAF). L’elaborazione dei dati è stata effettuata mediante l’utilizzo del software Office Excel, in cui sono stati calcolati i parametri fondamentali, suggeriti dalla normativa ASTM D6641/D6641M, per la caratterizzazione meccanica a compressione dei materiali CFRP.
Resumo:
L’obiettivo della presente tesi è analizzare, attraverso una campagna sperimentale, gli effetti dell’invecchiamento termico su materiali compositi avanzati. Due serie di provini, ottenuti da pannelli di fibra di carbonio/resina epossidica realizzati rispettivamente con le tecniche di produzione tramite laminazione manuale e RTM (Resin Transfer Molding), sono stati condizionati in forno o in congelatore per un determinato tempo e successivamente sottoposti a test di caratterizzazione meccanica. In questo modo sono state confrontate le prestazioni delle due tecnologie al fine di verificare l’applicabilità del processo RTM a prodotti di alta qualità. I campioni, impiegati nel presente studio, sono stati realizzati scegliendo una configurazione cross-ply, che ben si adatta alle successive fasi della campagna. Sui provini ottenuti sono stati eseguiti dei test di resistenza alla delaminazione tramite una pressa con supporti adattati appositamente allo scopo. Questa campagna sperimentale è stata svolta presso i laboratori hangar della Scuola di Ingegneria e Architettura dell’Università di Bologna, sede di Forlì. La caratterizzazione del materiale è avvenuta mediante prove a flessione D2344.
Resumo:
L’obbiettivo di questa tesi è ottenere un modello agli elementi finiti che simuli la prova a compressione su un campione di materiale composito a matrice polimerica rinforzata con fibre di carbonio unidirezionali (UD), mediante l’utilizzo di una attrezzatura denominata Combined Loading Compression (CLC) Test Fixture. Il programma utilizzato per realizzare il modello agli elementi finiti è Abaqus della Simulia. Il materiale oggetto dello studio è un prepreg UD di interesse nel settore automobilistico, e fa seguito ad una campagna di prove sperimentali (caratterizzazione a compressione) svolta nei laboratori ENEA di Faenza, dove opera l’Unità Tecnica Tecnologie dei Materiali Faenza (UTTMATF).
Resumo:
L’attività sperimentale presentata in questo elaborato riguarda lo studio di una particolare applicazione che impiega la tecnologia laser per la lavorazione di materiali compositi ed è stata interamente svolta, in particolar modo nella sua parte operativa, presso i laboratori della Facoltà di Ingegneria a Bologna. Il lavoro di tesi ha come obiettivo fondamentale la valutazione degli effetti che i parametri di processo possono avere sulla qualità risultante nel procedimento di ablazione per i materiali compositi. Per questa indagine sono stati utilizzati campioni piani (tutti identici tra loro) con rinforzo in fibra di carbonio e matrice in resina epossidica, i quali sono stati lavorati con un laser Nd:YAG (λ = 1064 nm) funzionante in regime continuo. L’idea alla base dell’intera attività sperimentale è stata quella di realizzare una ablazione ottimale, rimuovendo dai campioni esclusivamente la resina (in maniera locale) e tentando, allo stesso tempo, di ottenere il minimo danneggiamento possibile per le fibre. Le prove effettuate non costituiscono naturalmente un punto di arrivo, bensì rappresentano piuttosto un punto di partenza per acquisire informazioni preliminari che potranno consentire, nel prossimo futuro, di proseguire con il perfezionamento del processo e la messa a punto dei parametri, al fine di conseguire una lavorazione che dia risultati effettivamente ottimali ed interessanti per l’eventuale applicazione industriale.
Resumo:
Il materiale composito è entrato nell’ambiente industriale rivoluzionando il concetto di progettazione delle strutture e permettendo il raggiungimento di prestazioni molto più elevate, rispetto ai materiali tradizionali. Infatti, i compositi sono in grado di garantire elevata resistenza e leggerezza, proprietà molto richieste in svariati ambiti industriali. Un suo notevole impiego è riscontrabile nell’industria aeronautica, dove le principali case produttrici di aeromobili hanno investito un apprezzabile quantitativo di risorse economiche nella realizzazione di velivoli con una sempre maggiore percentuale di questo materiale. Il composito, nonostante ci siano testimonianze del suo utilizzo già durante la seconda guerra mondiale, viene tutt’ora ritenuto “nuovo”; questo poiché molte delle sue caratteristiche non sono state ancora esaurientemente analizzate. Le conoscenze ad esso relative presentano ancora, infatti delle lacune, come il loro comportamento a seguito di un impatto. L’obiettivo della presente tesi è quello di indagare, attraverso una campagna sperimentale innovativa, il comportamento del CFRP di fronte a tale problematica, prestando particolare attenzione alla casistica dell’impatto sul bordo. Su tale argomento infatti, non si hanno esempi in letteratura né normative a cui fare riferimento. I campioni, impiegati nel presente studio, sono stati realizzati scegliendo una configurazione cross-ply, che ben si adatta alle successive fasi della campagna. Sui provini ottenuti sono stati eseguiti gli impatti, con l’utilizzo di un pendolo di Charpy, alcuni centrali e altri laterali, con due differenti energie. Questa prima parte della campagna sperimentale è stata svolta presso i laboratori hangar di Forlì, della Scuola di Ingegneria e Architettura dell’Università di Bologna. La caratterizzazione del materiale è avvenuta mediante prove a compressione. Il processo è stato eseguito per verificare l’influenza che l’impatto genera sulle proprietà meccaniche a compressione. Per poter eseguire una campagna di test ottimale, si è vista necessaria un’attenta analisi delle varie attrezzature utilizzabili per le prove a compressione. La scelta è ricaduta sull’attrezzatura CLC (Combined Loading Compression), la quale è risultata essere la più affidabile e maneggevole per le prove oggetto di studio. La fase relativa allo svolgimento delle prove a compressione è stata eseguita presso i laboratori ENEA di Faenza –Unità Tecnica Tecnologie dei Materiali Faenza (UTTMATF).
Resumo:
Simulazione numerica con software Abaqus di impatti a bassa energia su laminati di fibra di carbonio con matrice epossidica per la previsione della formazione di delaminazioni interne. Confronto tra impatti centrali al provino e in prossimità del bordo.
Resumo:
Uno tra i principali problemi dei compositi è il fenomeno della delaminazione. In questo lavoro di tesi sono state prodotte membrane nanofibrose ottenute mediante elettrofilatura di poliarammidi, da impiegare come rinforzo per contrastare tale fenomeno. Sono state quindi preparate soluzioni di Nomex con differenti combinazioni di concentrazione e solvente da sottoporre ad elettrofilatura, e sono stati ricercati i parametri di processo ottimali. La qualità delle nanofibre è stata valutata attraverso analisi SEM e successivamente sono state determinate le proprietà termo-meccaniche delle membrane migliori. Le stesse sono state impiegate per la produzione di compositi in fibra di carbonio a matrice epossidica e l’effetto sulla delaminazione è stato valutato tramite test preliminari ILSS e DCB. Inoltre, è stato valutato al cono-calorimetro il comportamento alla fiamma del composito nano-rinforzato. Sono state anche tentate prove preliminari di elettrofilatura di soluzioni di Kevlar.
Resumo:
I materiali compositi, grazie alla combinazione delle proprietà dei singoli componenti di cui sono costituiti, in particolare la coesistenza di elevate caratteristiche meccaniche e pesi ridotti, rivestono da tempo un ruolo fondamentale nell’industria aeronautica e nel settore delle competizioni automobilistiche e motociclistiche. La possibilità di progettare i materiali in funzione della loro applicazione, unita alla riduzione dei costi di produzione, permette una crescente diffusione del loro utilizzo e l’ampliamento delle applicazioni a moltissimi altri settori, sia per componenti di tipo strutturale, sia di tipo estetico. L’obiettivo della presente tesi è analizzare, attraverso una campagna sperimentale, il comportamento di diversi materiali realizzati con la tecnica di produzione HP-RTM, tramite prove di taglio interlaminare e flessione, al fine di verificare l’applicabilità di tale processo a prodotti strutturali, in modo da velocizzare i tempi di produzione e quindi di abbassare i costi, mantenendo al tempo stesso elevate proprietà meccaniche. Lo scopo di questa campagna quindi è fornire, attraverso lo studio di 30 serie di provini, il materiale migliore in termini di resistenza a flessione e taglio interlaminare; inoltre per ogni tipologia di materiale vengono descritte le diverse distribuzioni dei valori di rottura riscontrati, in modo da lasciare al progettista più libertà possibile nella scelta del materiale in base alle specifiche richieste per una determinata applicazione. Questo studio permette di analizzare l’influenza di ogni singolo componente (tipo di fibra, tipo di binder, presenza o assenza di IMR), all’interno della stessa resina.
Resumo:
Il seguente elaborato è la conclusione dell'esperienza di tesi volta alla progettazione di componenti, nello specifico sedili e punti di ancoraggio per le cinture di sicurezza, per il cruiser Emilia 4, veicolo solare che gareggerà con le più importanti università mondiali nella 2017 World Solar Challenge in Australia. L'attività compiuta risulta essere il punto di arrivo dell'ottimizzazione strutturale degli elementi, attribuendo fondamentale importanza al peso delle strutture; l'obiettivo è stato raggiunto mediante l'adozione della fibra di carbonio, nel rispetto del regolamento della corsa e delle norme stradali australiane. Gran parte delle attività sono state svolte a Castel San Pietro nell'azienda Metal Tig, impresa specializzata nella lavorazione dei laminati in composito; qui si sono tenute riunioni settimanali per discutere dei progressi del progetto e delle modifiche da apportare. Il lavoro di tesi si conclude con la quarta revisione dei componenti affidatomi: essa probabilmente non sarà la versione definitiva, ma sicuramente sarà un punto di riferimento per i prossimi progettisti impegnati nell'impresa.