4 resultados para Low Profile Multi-Band Antenna
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The development of next generation microwave technology for backhauling systems is driven by an increasing capacity demand. In order to provide higher data rates and throughputs over a point-to-point link, a cost-effective performance improvement is enabled by an enhanced energy-efficiency of the transmit power amplification stage, whereas a combination of spectrally efficient modulation formats and wider bandwidths is supported by amplifiers that fulfil strict constraints in terms of linearity. An optimal trade-off between these conflicting requirements can be achieved by resorting to flexible digital signal processing techniques at baseband. In such a scenario, the adaptive digital pre-distortion is a well-known linearization method, that comes up to be a potentially widely-used solution since it can be easily integrated into base stations. Its operation can effectively compensate for the inter-modulation distortion introduced by the power amplifier, keeping up with the frequency-dependent time-varying behaviour of the relative nonlinear characteristic. In particular, the impact of the memory effects become more relevant and their equalisation become more challenging as the input discrete signal feature a wider bandwidth and a faster envelope to pre-distort. This thesis project involves the research, design and simulation a pre-distorter implementation at RTL based on a novel polyphase architecture, which makes it capable of operating over very wideband signals at a sampling rate that complies with the actual available clock speed of current digital devices. The motivation behind this structure is to carry out a feasible pre-distortion for the multi-band spectrally efficient complex signals carrying multiple channels that are going to be transmitted in near future high capacity and reliability microwave backhaul links.
Resumo:
This thesis presents a CMOS Amplifier with High Common Mode rejection designed in UMC 130nm technology. The goal is to achieve a high amplification factor for a wide range of biological signals (with frequencies in the range of 10Hz-1KHz) and to reject the common-mode noise signal. It is here presented a Data Acquisition System, composed of a Delta-Sigma-like Modulator and an antenna, that is the core of a portable low-complexity radio system; the amplifier is designed in order to interface the data acquisition system with a sensor that acquires the electrical signal. The Modulator asynchronously acquires and samples human muscle activity, by sending a Quasi-Digital pattern that encodes the acquired signal. There is only a minor loss of information translating the muscle activity using this pattern, compared to an encoding technique which uses astandard digital signal via Impulse-Radio Ultra-Wide Band (IR-UWB). The biological signals, needed for Electromyographic analysis, have an amplitude of 10-100μV and need to be highly amplified and separated from the overwhelming 50mV common mode noise signal. Various tests of the firmness of the concept are presented, as well the proof that the design works even with different sensors, such as Radiation measurement for Dosimetry studies.
Resumo:
In questa tesi si sono valutate le prestazioni di un sistema di localizzazione multi-antenna di tag radio frequency identification (RFID) passivi in ambiente indoor. Il sistema, composto da un reader in movimento che percorre una traiettoria nota, ha come obiettivo localizzare il tag attraverso misure di fase; più precisamente la differenza di fase tra il segnale di interrogazione, emesso dal reader, e il segnale ricevuto riflesso dal tag che è correlato alla distanza tra di essi. Dopo avere eseguito una ricerca sullo stato dell’arte di queste tecniche e aver derivato il criterio maximum likelihood (ML) del sistema si è proceduto a valutarne le prestazioni e come eventuali fattori agissero sul risultato di localizzazione attraverso simulazioni Matlab. Come ultimo passo si è proceduto a effettuare una campagna di misure, testando il sistema in un ambiente reale. Si sono confrontati i risultati di localizzazione di tutti gli algoritmi proposti quando il reader si muove su una traiettoria rettilinea e su una traiettoria angolare, cercando di capire come migliorare i risultati.
Resumo:
Uno dei temi più recenti nel campo delle telecomunicazioni è l'IoT. Tale termine viene utilizzato per rappresentare uno scenario nel quale non solo le persone, con i propri dispositivi personali, ma anche gli oggetti che le circondano saranno connessi alla rete con lo scopo di scambiarsi informazioni di diversa natura. Il numero sempre più crescente di dispositivi connessi in rete, porterà ad una richiesta maggiore in termini di capacità di canale e velocità di trasmissione. La risposta tecnologica a tali esigenze sarà data dall’avvento del 5G, le cui tecnologie chiave saranno: massive MIMO, small cells e l'utilizzo di onde millimetriche. Nel corso del tempo la crescita delle vendite di smartphone e di dispositivi mobili in grado di sfruttare la localizzazione per ottenere servizi, ha fatto sì che la ricerca in questo campo aumentasse esponenzialmente. L'informazione sulla posizione viene utilizzata infatti in differenti ambiti, si passa dalla tradizionale navigazione verso la meta desiderata al geomarketing, dai servizi legati alle chiamate di emergenza a quelli di logistica indoor per industrie. Data quindi l'importanza del processo di positioning, l'obiettivo di questa tesi è quello di ottenere la stima sulla posizione e sulla traiettoria percorsa da un utente che si muove in un ambiente indoor, sfruttando l'infrastruttura dedicata alla comunicazione che verrà a crearsi con l'avvento del 5G, permettendo quindi un abbattimento dei costi. Per fare ciò è stato implementato un algoritmo basato sui filtri EKF, nel quale il sistema analizzato presenta in ricezione un array di antenne, mentre in trasmissione è stato effettuato un confronto tra due casi: singola antenna ed array. Lo studio di entrambe le situazioni permette di evidenziare, quindi, i vantaggi ottenuti dall’utilizzo di sistemi multi antenna. Inoltre sono stati analizzati altri elementi chiave che determinano la precisione, quali geometria del sistema, posizionamento del ricevitore e frequenza operativa.