5 resultados para Lateral-torsional Buckling
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Reinforced concrete columns might fail because of buckling of the longitudinal reinforcing bar when exposed to earthquake motions. Depending on the hoop stiffness and the length-over-diameter ratio, the instability can be local (in between two subsequent hoops) or global (the buckling length comprises several hoop spacings). To get insight into the topic, an extensive literary research of 19 existing models has been carried out including different approaches and assumptions which yield different results. Finite element fiberanalysis was carried out to study the local buckling behavior with varying length-over-diameter and initial imperfection-over-diameter ratios. The comparison of the analytical results with some experimental results shows good agreement before the post buckling behavior undergoes large deformation. Furthermore, different global buckling analysis cases were run considering the influence of different parameters; for certain hoop stiffnesses and length-over-diameter ratios local buckling was encountered. A parametric study yields an adimensional critical stress in function of a stiffness ratio characterized by the reinforcement configuration. Colonne in cemento armato possono collassare per via dell’instabilità dell’armatura longitudinale se sottoposte all’azione di un sisma. In funzione della rigidezza dei ferri trasversali e del rapporto lunghezza d’inflessione-diametro, l’instabilità può essere locale (fra due staffe adiacenti) o globale (la lunghezza d’instabilità comprende alcune staffe). Per introdurre alla materia, è proposta un’esauriente ricerca bibliografica di 19 modelli esistenti che include approcci e ipotesi differenti che portano a risultati distinti. Tramite un’analisi a fibre e elementi finiti si è studiata l’instabilità locale con vari rapporti lunghezza d’inflessione-diametro e imperfezione iniziale-diametro. Il confronto dei risultati analitici con quelli sperimentali mostra una buona coincidenza fino al raggiungimento di grandi spostamenti. Inoltre, il caso d’instabilità globale è stato simulato valutando l’influenza di vari parametri; per certe configurazioni di rigidezza delle staffe e lunghezza d’inflessione-diametro si hanno ottenuto casi di instabilità locale. Uno studio parametrico ha permesso di ottenere un carico critico adimensionale in funzione del rapporto di rigidezza dato dalle caratteristiche dell’armatura.
Resumo:
The lateral characteristics of tires in terms of lateral forces as a function of sideslip angle is a focal point in the prediction of ground loads and ground handling aircraft behavior. However, tests to validate such coefficients are not mandatory to obtain Aircraft Type Certification and so they are not available for ATR tires. Anyway, some analytical values are implemented in ATR calculation codes (Flight Qualities in-house numerical code and Loads in-house numerical code). Hence, the goal of my work is to further investigate and validate lateral tires characteristics by means of: exploitation and re-parameterization of existing test on NLG tires, implementation of easy-handle model based on DFDR parameters to compute sideslip angles, application of this model to compute lateral loads on existing flight tests and incident cases, analysis of results. The last part of this work is dedicated to the preliminary study of a methodology to perform a test to retrieve lateral tire loads during ground turning with minimum requirements in terms of aircraft test instrumentation. This represents the basis for future works.
Resumo:
The seismic behaviour of one-storey asymmetric structures has been studied since 1970s by a number of researches studies which identified the coupled nature of the translational-to-torsional response of those class of systems leading to severe displacement magnifications at the perimeter frames and therefore to significant increase of local peak seismic demand to the structural elements with respect to those of equivalent not-eccentric systems (Kan and Chopra 1987). These studies identified the fundamental parameters (such as the fundamental period TL normalized eccentricity e and the torsional-to-lateral frequency ratio Ωϑ) governing the torsional behavior of in-plan asymmetric structures and trends of behavior. It has been clearly recognized that asymmetric structures characterized by Ωϑ >1, referred to as torsionally-stiff systems, behave quite different form structures with Ωϑ <1, referred to as torsionally-flexible systems. Previous research works by some of the authors proposed a simple closed-form estimation of the maximum torsional response of one-storey elastic systems (Trombetti et al. 2005 and Palermo et al. 2010) leading to the so called “Alpha-method” for the evaluation of the displacement magnification factors at the corner sides. The present paper provides an upgrade of the “Alpha Method” removing the assumption of linear elastic response of the system. The main objective is to evaluate how the excursion of the structural elements in the inelastic field (due to the reaching of yield strength) affects the displacement demand of one-storey in-plan asymmetric structures. The system proposed by Chopra and Goel in 2007, which is claimed to be able to capture the main features of the non-linear response of in-plan asymmetric system, is used to perform a large parametric analysis varying all the fundamental parameters of the system, including the inelastic demand by varying the force reduction factor from 2 to 5. Magnification factors for different force reduction factor are proposed and comparisons with the results obtained from linear analysis are provided.