2 resultados para Jacobi polynomials

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nello studio di sistemi dinamici si cerca una trasformazione nello spazio delle fasi, detta trasformazione canonica, che lasci invariato il sistema di Hamilton e che porti a una funzione hamiltoniana che non dipenda più dai parametri lagrangiani, ma solo dai momenti. Si arriva quindi all'equazione di Hamilton-Jacobi che è una particolare equazione differenziale alle derivate parziali con incognita una funzione phi a valori scalari. Nei casi in cui ci siano n parametri lagrangiani si definisce il concetto di varietà lagrangiana come una varietà su cui si annulla la forma simplettica canonica e sotto l'ipotesi che esista una proiezione su R^n i punti di questa varietà si scrivono come (x,grad(phi(x)) e soddisfano l'equazione di Hamilton-Jacobi. Infine si illustra come una funzione phi trovata in questo modo permetta di approssimare l'equazione di Schroedinger.