13 resultados para Intersection Traffic Control Devices.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The symbol in air traffic control (ATC), essentially unchanged since the beginning of commercial air traffic early last century, is the characteristic control tower with its large, tilted windows, situated at an exposed location, and rising high above the airport. “Remote Tower” is changing the provision of Air Traffic Services (ATS) in a way that it is more service tailored, dynamically located and available when and where needed, enabled by digital solutions replacing the physical presence of controllers and control towers at aerodromes with a remotely provided Air Traffic Service for Multiple Aerodromes. The paper examines this phenomenon that will mark an epochal change, analysing the experiments and validations carried out in the last years.
Resumo:
In this thesis effects of plasma actuators based on Dielectric Barrier Discharge (DBD) technology over a NACA 0015 bidimensional airfoil have been analyzed in an experimental way, at low Reynolds number. Work developed on thesis has been carried on in partnership with the Department of Electrical Engineering of Università di Bologna, inside Wind Tunnel of the Applied Aerodynamic Laboratory of Aerospace Engineering faculty. In order to verify the effectiveness of these active control devices, the analysis has shown how actuators succeed in prevent boundary layer separation only in certain conditions af angle of attack and Reynolds numbers. Moreover, in this thesis actuators’ chordwise position effect has been also analyzed, together with the influence of steady and unsteady operations.
Resumo:
In this thesis, we state the collision avoidance problem as a vertex covering problem, then we consider a distributed framework in which a team of cooperating Unmanned Vehicles (UVs) aim to solve this optimization problem cooperatively to guarantee collision avoidance between group members. For this purpose, we implement a distributed control scheme based on a robust Set-Theoretic Model Predictive Control ( ST-MPC) strategy, where the problem involves vehicles with independent dynamics but with coupled constraints, to capture required cooperative behavior.
Resumo:
With the development of new technologies, Air Traffic Control, in the nearby of the airport, switched from a purely visual control to the use of radar, sensors and so on. As the industry is switching to the so-called Industry 4.0, also in this frame, it would be possible to implement some of the new tools that can facilitate the work of Air Traffic Controllers. The European Union proposed an innovative project to help the digitalization of the European Sky by means of the Single European Sky ATM Research (SESAR) program, which is the foundation on which the Single European Sky (SES) is based, in order to improve the already existing technologies to transform Air Traffic Management in Europe. Within this frame, the Resilient Synthetic Vision for Advanced Control Tower Air Navigation Service Provision (RETINA) project, which saw the light in 2016, studied the possibility to apply new tools within the conventional control tower to reduce the air traffic controller workload, thanks to the improvements in the augmented reality technologies. After the validation of RETINA, the Digital Technologies for Tower (DTT) project was established and the solution proposed by the University of Bologna aimed, among other things, to introduce Safety Nets in a Head-Up visualization. The aim of this thesis is to analyze the Safety Nets in use within the control tower and, by developing a working concept, implement them in a Head-Up view to be tested by Air Traffic Control Operators (ATCOs). The results, coming from the technical test, show that this concept is working and it could be leading to a future implementation in a real environment, as it improves the air traffic controller working conditions also when low visibility conditions apply.
Resumo:
Questo lavoro di tesi ha visto come obiettivo finale quello di realizzare una se- rie di attacchi, alcuni di questi totalmente originali, ai protocolli della famiglia Time-Sensitive Networking (TSN) attraverso lo sviluppo di un’infrastruttura virtualizzata. L’infrastruttura è stata costruita e progettata utilizzando mac- chine virtuali con Quick EMUlator (QEMU) come strato di virtualizzazione ed accelerate attraverso Kernel-based Virtual Machine (KVM). Il progetto è stato concepito come Infrastrucutre as Code (IaC), attraverso l’ausilio di Ansible e alcuni script shell utilizzati come collante per le varie parti del progetto.
Resumo:
La gestione del traffico è una delle principali problematiche delle città moderne, e porta alla definizione di nuove sfide per quanto riguarda l’ottimizzazione del flusso veicolare. Il controllo semaforico è uno degli elementi fondamentali per ottimizzare la gestione del traffico. Attualmente la rilevazione del traffico viene effettuata tramite sensori, tra i quali vengono maggiormente utilizzate le spire magnetiche, la cui installazione e gestione implica costi elevati. In questo contesto, il progetto europeo COLOMBO si pone come obiettivo l’ideazione di nuovi sistemi di regolazione semaforica in grado di rilevare il traffico veicolare mediante sensori più economici da installare e mantenere, e capaci, sulla base di tali rilevazioni, di auto organizzarsi, traendo ispirazione dal campo dell’intelligenza artificiale noto come swarm intelligence. Alla base di questa auto organizzazione semaforica di COLOMBO vi sono due diversi livelli di politiche: macroscopico e microscopico. Nel primo caso le politiche macroscopiche, utilizzando il feromone come astrazione dell’attuale livello del traffico, scelgono la politica di gestione in base alla quantità di feromone presente nelle corsie di entrata e di uscita. Per quanto riguarda invece le politiche microscopiche, il loro compito è quello di deci- dere la durata dei periodi di rosso o verde modificando una sequenza di fasi, chiamata in COLOMBO catena. Le catene possono essere scelte dal sistema in base al valore corrente della soglia di desiderabilità e ad ogni catena corrisponde una soglia di desiderabilità. Lo scopo di questo elaborato è quello di suggerire metodi alternativi all’attuale conteggio di questa soglia di desiderabilità in scenari di bassa presenza di dispositivi per la rilevazione dei veicoli. Ogni algoritmo complesso ha bisogno di essere ottimizzato per migliorarne le performance. Anche in questo caso, gli algoritmi proposti hanno subito un processo di parameter tuning per ottimizzarne le prestazioni in scenari di bassa presenza di dispositivi per la rilevazione dei veicoli. Sulla base del lavoro di parameter tuning, infine, sono state eseguite delle simulazioni per valutare quale degli approcci suggeriti sia il migliore.
Resumo:
Urbanization has occasionally been linked to negative consequences. Traffic light system in urban arterial networks plays an essential role to the operation of transport systems. The availability of new Intelligent Transportation System innovations paved the way for connecting vehicles and road infrastructure. GLOSA, or the Green Light Optimal Speed Advisory, is a recent integration of vehicle-to-everything (v2x) technology. This thesis emphasized GLOSA system's potential as a tool for addressing traffic signal optimization. GLOSA serves as an advisory to drivers, informing them of the speed they must maintain to reduce waiting time. The considered study area in this thesis is the Via Aurelio Saffi – Via Emilia Ponente corridor in the Metropolitan City of Bologna which has several signalized intersections. Several simulation runs were performed in SUMOPy software on each peak-hour period (morning and afternoon) using recent actual traffic count data. GLOSA devices were placed on a 300m GLOSA distance. Considering the morning peak-hour, GLOSA outperformed the actuated traffic signal control, which is the baseline scenario, in terms of average waiting time, average speed, average fuel consumption per vehicle and average CO2 emissions. A remarkable 97% reduction on both fuel consumption and CO2 emissions were obtained. The average speed of vehicles running through the simulation was increased as well by 7% and a time saved of 25%. Same results were obtained for the afternoon peak hour with a decrease of 98% on both fuel consumption and CO2 emissions, 20% decrease on average waiting time, and an increase of 2% in average speed. In addition to previously mentioned benefits of GLOSA, a 15% and 13% decrease in time loss were obtained during morning and afternoon peak-hour, respectively. Towards the goal of sustainability, GLOSA shows a promising result of significantly lowering fuel consumption and CO2 emissions per vehicle.
Resumo:
The rapid development in the field of lighting and illumination allows low energy consumption and a rapid growth in the use, and development of solid-state sources. As the efficiency of these devices increases and their cost decreases there are predictions that they will become the dominant source for general illumination in the short term. The objective of this thesis is to study, through extensive simulations in realistic scenarios, the feasibility and exploitation of visible light communication (VLC) for vehicular ad hoc networks (VANETs) applications. A brief introduction will introduce the new scenario of smart cities in which visible light communication will become a fundamental enabling technology for the future communication systems. Specifically, this thesis focus on the acquisition of several, frequent, and small data packets from vehicles, exploited as sensors of the environment. The use of vehicles as sensors is a new paradigm to enable an efficient environment monitoring and an improved traffic management. In most cases, the sensed information must be collected at a remote control centre and one of the most challenging aspects is the uplink acquisition of data from vehicles. My thesis discusses the opportunity to take advantage of short range vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications to offload the cellular networks. More specifically, it discusses the system design and assesses the obtainable cellular resource saving, by considering the impact of the percentage of vehicles equipped with short range communication devices, of the number of deployed road side units, and of the adopted routing protocol. When short range communications are concerned, WAVE/IEEE 802.11p is considered as standard for VANETs. Its use together with VLC will be considered in urban vehicular scenarios to let vehicles communicate without involving the cellular network. The study is conducted by simulation, considering both a simulation platform (SHINE, simulation platform for heterogeneous interworking networks) developed within the Wireless communication Laboratory (Wilab) of the University of Bologna and CNR, and network simulator (NS3). trying to realistically represent all the wireless network communication aspects. Specifically, simulation of vehicular system was performed and introduced in ns-3, creating a new module for the simulator. This module will help to study VLC applications in VANETs. Final observations would enhance and encourage potential research in the area and optimize performance of VLC systems applications in the future.
Resumo:
Internet traffic classification is a relevant and mature research field, anyway of growing importance and with still open technical challenges, also due to the pervasive presence of Internet-connected devices into everyday life. We claim the need for innovative traffic classification solutions capable of being lightweight, of adopting a domain-based approach, of not only concentrating on application-level protocol categorization but also classifying Internet traffic by subject. To this purpose, this paper originally proposes a classification solution that leverages domain name information extracted from IPFIX summaries, DNS logs, and DHCP leases, with the possibility to be applied to any kind of traffic. Our proposed solution is based on an extension of Word2vec unsupervised learning techniques running on a specialized Apache Spark cluster. In particular, learning techniques are leveraged to generate word-embeddings from a mixed dataset composed by domain names and natural language corpuses in a lightweight way and with general applicability. The paper also reports lessons learnt from our implementation and deployment experience that demonstrates that our solution can process 5500 IPFIX summaries per second on an Apache Spark cluster with 1 slave instance in Amazon EC2 at a cost of $ 3860 year. Reported experimental results about Precision, Recall, F-Measure, Accuracy, and Cohen's Kappa show the feasibility and effectiveness of the proposal. The experiments prove that words contained in domain names do have a relation with the kind of traffic directed towards them, therefore using specifically trained word embeddings we are able to classify them in customizable categories. We also show that training word embeddings on larger natural language corpuses leads improvements in terms of precision up to 180%.
Resumo:
Advanced Driver Assistance Systems (ADAS) are proving to have huge potential in road safety, comfort, and efficiency. In recent years, car manufacturers have equipped their high-end vehicles with Level 2 ADAS, which are, according to SAE International, systems that combine both longitudinal and lateral active motion control. These automated driving features, while only available in highway scenarios, appear to be very promising towards the introduction of hands-free driving. However, as they rely only on an on-board sensor suite, their continuative operation may be affected by the current environmental conditions: this prevents certain functionalities such as the automated lane change, other than requiring the driver to keep constantly the hands on the steering wheel. The enabling factor for hands-free highway driving proposed by Mobileye is the integration of high-definition maps, thus leading to the so-called Level 2+. This thesis was carried out during an internship in Maserati's Virtual Engineering team. The activity consisted of the design of an L2+ Highway Assist System following the Rapid Control Prototyping approach, starting from the definition of the requirements up to the real-time implementation and testing on a simulator of the brand new compact SUV Maserati Grecale. The objective was to enhance the current Level 2 highway driving assistance system with hands-free driving capability; for this purpose an Autonomous Lane Change functionality has been designed, proposing a Model Predictive Control-based decision-maker, in charge of assessing both the feasibility and convenience of performing a lane-change maneuver. The result is a Highway Assist System capable of driving the vehicle in a traffic scenario safely and efficiently, never requiring driver intervention.
Resumo:
In the field of Power Electronics, several types of motor control systems have been developed using STM microcontroller and power boards. In both industrial power applications and domestic appliances, power electronic inverters are widely used. Inverters are used to control the torque, speed, and position of the rotor in AC motor drives. An inverter delivers constant-voltage and constant-frequency power in uninterruptible power sources. Because inverter power supplies have a high-power consumption and low transfer efficiency rate, a three-phase sine wave AC power supply was created using the embedded system STM32, which has low power consumption and efficient speed. It has the capacity of output frequency of 50 Hz and the RMS of line voltage. STM32 embedded based Inverter is a power supply that integrates, reduced, and optimized the power electronics application that require hardware system, software, and application solution, including power architecture, techniques, and tools, approaches capable of performance on devices and equipment. Power inverters are currently used and implemented in green energy power system with low energy system such as sensors or microcontroller to perform the operating function of motors and pumps. STM based power inverter is efficient, less cost and reliable. My thesis work was based on STM motor drives and control system which can be implemented in a gas analyser for operating the pumps and motors. It has been widely applied in various engineering sectors due to its ability to respond to adverse structural changes and improved structural reliability. The present research was designed to use STM Inverter board on low power MCU such as NUCLEO with some practical examples such as Blinking LED, and PWM. Then we have implemented a three phase Inverter model with Steval-IPM08B board, which converter single phase 230V AC input to three phase 380 V AC output, the output will be useful for operating the induction motor.
Resumo:
City streets carry a lot of information that can be exploited to improve the quality of the services the citizens receive. For example, autonomous vehicles need to act accordingly to all the element that are nearby the vehicle itself, like pedestrians, traffic signs and other vehicles. It is also possible to use such information for smart city applications, for example to predict and analyze the traffic or pedestrian flows. Among all the objects that it is possible to find in a street, traffic signs are very important because of the information they carry. This information can in fact be exploited both for autonomous driving and for smart city applications. Deep learning and, more generally, machine learning models however need huge quantities to learn. Even though modern models are very good at gener- alizing, the more samples the model has, the better it can generalize between different samples. Creating these datasets organically, namely with real pictures, is a very tedious task because of the wide variety of signs available in the whole world and especially because of all the possible light, orientation conditions and con- ditions in general in which they can appear. In addition to that, it may not be easy to collect enough samples for all the possible traffic signs available, cause some of them may be very rare to find. Instead of collecting pictures manually, it is possible to exploit data aug- mentation techniques to create synthetic datasets containing the signs that are needed. Creating this data synthetically allows to control the distribution and the conditions of the signs in the datasets, improving the quality and quantity of training data that is going to be used. This thesis work is about using copy-paste data augmentation to create synthetic data for the traffic sign recognition task.
Resumo:
The technological enhancement of industrial automation and manufacturing is stricty connected to the innovations of communication technologies. The main impact of the last century is due to the introduction of FieldBus systems. Indeed, they have been fundamental for the lowest levels of the automation hierarchy. Besides factory automation, many processes nowadays would not be feasible without Fieldbus based networks. Indeed, these systems are employed in a large variety of application areas from energy distribution to in-vehicle networking but also in rail-way applications and avionics. In the following document, the main activities executed during the internship in I.M.A. S.p.A. are reported. The objective of the thesis is to develop an EtherCAT (Ethernet Fieldbus) slave integrated with peripherals for motion control applications. The slave is created by exploiting a micro-controller of Renesas Electronics called RX72M. Since, for the specific application the MCU lacks of several components needed for motion control, external devices are employed for developing the project.