2 resultados para IDENTIFICATION TEST AUDIT
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il seguente elaborato si concentra sull'identifi�cazione strutturale di sistemi soggetti a sollecitazioni aeroelastiche e nello speci�fico l'attenzione viene rivolta ad impalcati da ponte. Si analizzano i concetti principali caratterizzanti il campo dell'aeroelasticità indagando i fattori dominanti che entrano in gioco sul piano teorico. In seguito, si considera il metodo di identifi�cazione strutturale chiamato Covariance Block Hankel Matrix (CBHM) utilizzato come strumento di derivazione dei coeffi�cienti aeroelastici propri della struttura. Infi�ne, si indaga il comportamento di questo metodo di identi�ficazione al variare di una serie di parametri chiave e all'interno di diversi scenari, visionando risultati ottenuti tramite una serie di test eff�ettuati per provare l'a�dattabilità del metodo stesso al variare delle condizioni che caratterizzano il sistema.
Resumo:
Turbulent plasmas inside tokamaks are modeled and studied using guiding center theory, applied to charged test particles, in a Hamiltonian framework. The equations of motion for the guiding center dynamics, under the conditions of a constant and uniform magnetic field and turbulent electrostatic field are derived by averaging over the fast gyroangle, for the first and second order in the guiding center potential, using invertible changes of coordinates such as Lie transforms. The equations of motion are then made dimensionless, exploiting temporal and spatial periodicities of the model chosen for the electrostatic potential. They are implemented numerically in Python. Fast Fourier Transform and its inverse are used. Improvements to the original Python scripts are made, notably the introduction of a power-law curve fitting to account for anomalous diffusion, the possibility to integrate the equations in two steps to save computational time by removing trapped trajectories, and the implementation of multicolored stroboscopic plots to distinguish between trapped and untrapped guiding centers. The post-processing of the results is made in MATLAB. The values and ranges of the parameters chosen for the simulations are selected based on numerous simulations used as feedback tools. In particular, a recurring value for the threshold to detect trapped trajectories is evidenced. Effects of the Larmor radius, the amplitude of the guiding center potential and the intensity of its second order term are studied by analyzing their diffusive regimes, their stroboscopic plots and the shape of guiding center potentials. The main result is the identification of cases anomalous diffusion depending on the values of the parameters (mostly the Larmor radius). The transitions between diffusive regimes are identified. The presence of highways for the super-diffusive trajectories are unveiled. The influence of the charge on these transitions from diffusive to ballistic behaviors is analyzed.