8 resultados para Gromov-Hausdorff limit
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L'argomento della tesi è la misura di Hausdorff in RN e la dimostrazione della "Formula dell'Area", che permette di esprimere la misura di particolari.
Resumo:
In questa tesi sono presentate la misura e la dimensione di Hausdorff, gli strumenti matematici che permettono di descrivere e analizzare alcune delle più importanti proprietà degli insiemi frattali. Inoltre viene introdotto il carattere di autosimilarità, comune a questi insiemi, e vengono mostrati alcuni tra i più noti esempi di frattali, come l'insieme di Cantor, la curva di Koch, l'insieme di Mandelbrot e gli insiemi di Julia. Di quest'ultimi sono presenti immagini ottenute tramite un codice Matlab.
Resumo:
Obiettivo della tesi è fornire nozioni di teoria della misura tramite cui è possibile l'analisi e la descrizione degli insiemi frattali. A tal fine vengono definite la Misura e la Dimensione di Hausdorff, strumenti matematici che permettono di "misurare" tali oggetti particolari, per i quali la classica Misura di Lebesgue non risulta sufficientemente precisa. Viene introdotto, inoltre, il carattere di autosimilarità, comune a molti di questi insiemi, e sono forniti alcuni tra i più noti esempi di frattali, come l'insieme di Cantor, l'insieme di Mandelbrot e il triangolo di Sierpinski. Infine, viene verificata l'ipotesi dell'esistenza di componenti di natura frattale in serie storiche di indici borsistici e di titoli finanziari (Ipotesi dei Mercati Frattali, Peters, 1990).
Resumo:
In this paper we study the notion of degree forsubmanifolds embedded in an equiregular sub-Riemannian manifold and we provide the definition of their associated area functional. In this setting we prove that the Hausdorff dimension of a submanifold coincides with its degree, as stated by Gromov. Using these general definitions we compute the first variation for surfaces embedded in low dimensional manifolds and we obtain the partial differential equation associated to minimal surfaces. These minimal surfaces have several applications in the neurogeometry of the visual cortex.