8 resultados para Graph-Based Linear Programming Modelling

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il lavoro che ho sviluppato presso l'unità di RM funzionale del Policlinico S.Orsola-Malpighi, DIBINEM, è incentrato sull'analisi dati di resting state - functional Magnetic Resonance Imaging (rs-fMRI) mediante l'utilizzo della graph theory, con lo scopo di valutare eventuali differenze in termini di connettività cerebrale funzionale tra un campione di pazienti affetti da Nocturnal Frontal Lobe Epilepsy (NFLE) ed uno di controlli sani. L'epilessia frontale notturna è una peculiare forma di epilessia caratterizzata da crisi che si verificano quasi esclusivamente durante il sonno notturno. Queste sono contraddistinte da comportamenti motori, prevalentemente distonici, spesso complessi, e talora a semiologia bizzarra. L'fMRI è una metodica di neuroimaging avanzata che permette di misurare indirettamente l'attività neuronale. Tutti i soggetti sono stati studiati in condizioni di resting-state, ossia di veglia rilassata. In particolare mi sono occupato di analizzare i dati fMRI con un approccio innovativo in campo clinico-neurologico, rappresentato dalla graph theory. I grafi sono definiti come strutture matematiche costituite da nodi e links, che trovano applicazione in molti campi di studio per la modellizzazione di strutture di diverso tipo. La costruzione di un grafo cerebrale per ogni partecipante allo studio ha rappresentato la parte centrale di questo lavoro. L'obiettivo è stato quello di definire le connessioni funzionali tra le diverse aree del cervello mediante l'utilizzo di un network. Il processo di modellizzazione ha permesso di valutare i grafi neurali mediante il calcolo di parametri topologici che ne caratterizzano struttura ed organizzazione. Le misure calcolate in questa analisi preliminare non hanno evidenziato differenze nelle proprietà globali tra i grafi dei pazienti e quelli dei controlli. Alterazioni locali sono state invece riscontrate nei pazienti, rispetto ai controlli, in aree della sostanza grigia profonda, del sistema limbico e delle regioni frontali, le quali rientrano tra quelle ipotizzate essere coinvolte nella fisiopatologia di questa peculiare forma di epilessia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial Intelligence is reshaping the field of fashion industry in different ways. E-commerce retailers exploit their data through AI to enhance their search engines, make outfit suggestions and forecast the success of a specific fashion product. However, it is a challenging endeavour as the data they possess is huge, complex and multi-modal. The most common way to search for fashion products online is by matching keywords with phrases in the product's description which are often cluttered, inadequate and differ across collections and sellers. A customer may also browse an online store's taxonomy, although this is time-consuming and doesn't guarantee relevant items. With the advent of Deep Learning architectures, particularly Vision-Language models, ad-hoc solutions have been proposed to model both the product image and description to solve this problems. However, the suggested solutions do not exploit effectively the semantic or syntactic information of these modalities, and the unique qualities and relations of clothing items. In this work of thesis, a novel approach is proposed to address this issues, which aims to model and process images and text descriptions as graphs in order to exploit the relations inside and between each modality and employs specific techniques to extract syntactic and semantic information. The results obtained show promising performances on different tasks when compared to the present state-of-the-art deep learning architectures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of the user scheduling problem in a Low Earth Orbit (LEO) Multi-User MIMO system is the objective of this thesis. With the application of cutting-edge digital beamforming algorithms, a LEO satellite with an antenna array and a large number of antenna elements can provide service to many user terminals (UTs) in full frequency reuse (FFR) schemes. Since the number of UTs on-ground are many more than the transmit antennas on the satellite, user scheduling is necessary. Scheduling can be accomplished by grouping users into different clusters: users within the same cluster are multiplexed and served together via Space Division Multiple Access (SDMA), i.e., digital beamforming or Multi-User MIMO techniques; the different clusters of users are then served on different time slots via Time Division Multiple Access (TDMA). The design of an optimal user grouping strategy is known to be an NP-complete problem which can be solved only through exhaustive search. In this thesis, we provide a graph-based user scheduling and feed space beamforming architecture for the downlink with the aim of reducing user inter-beam interference. The main idea is based on clustering users whose pairwise great-circle distance is as large as possible. First, we create a graph where the users represent the vertices, whereas an edge in the graph between 2 users exists if their great-circle distance is above a certain threshold. In the second step, we develop a low complex greedy user clustering technique and we iteratively search for the maximum clique in the graph, i.e., the largest fully connected subgraph in the graph. Finally, by using the 3 aforementioned power normalization techniques, a Minimum Mean Square Error (MMSE) beamforming matrix is deployed on a cluster basis. The suggested scheduling system is compared with a position-based scheduler, which generates a beam lattice on the ground and randomly selects one user per beam to form a cluster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm. We propose to learn a variable selection policy for branch-and-bound in mixed-integer linear programming, by imitation learning on a diversified variant of the strong branching expert rule. We encode states as bipartite graphs and parameterize the policy as a graph convolutional neural network. Experiments on a series of synthetic problems demonstrate that our approach produces policies that can improve upon expert-designed branching rules on large problems, and generalize to instances significantly larger than seen during training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le variabili ambientali e lo sfruttamento della pesca sono dei possibili fattori nel determinare la struttura della comunità demersale. L’area di studio è il Golfo di Antalya, con un area aperta ed una chiusa ad ogni attività di pesca, il periodo di studio ha coperto tre stagioni (primavera, estate, autunno). Lo scopo è quello di delineare un quadro generale sulla distribuzione spaziale e temporale delle risorse alieutiche demersali in quest’area. In questo lavoro di tesi la PCA è stata usata al fine di determinare le variabili ambientali (ossigeno, salinità, temperatura, pH, materia sospesa) che determinano maggiormente la differenza tra le stazioni, tecniche di analisi multivariata hanno invece indagato una possibile variazione su scala spaziale e temporale dei parametri abiotici. La Cluster Analysis effettuata sui dati di abbondanza ha delineato quattro raggruppamenti principali, due ad una profondità minore di 100 m e due ad una profondità maggiore (40% di similarità). Questi risultati sono confermati dall’analisi MDS. L’analisi SIMPER ha messo in evidenza le specie che maggiormente incidono sulla differenza tra strati di profondità. Gli indici di biodiversità sono stati calcolati per indagare la diversità e la variabilità temporale e spaziale della comunità demersale. Due procedure la BIO-ENV e la DistLM (Distance-based linear models) sono state effettuate per individuare le variabili abiotiche che potrebbero essere responsabili dei diversi raggruppamenti nella struttura del popolamento demersale. Le specie commerciali: Mullus barbatus, Upeneus moluccensis, Upeneus pori sono state prese come oggetto per la ricerca di possibili effetti della pesca a livello di popolazione. Per i dati di abbondanza e di biomassa di queste specie è stata eseguita l’analisi multivariata MANOVA (Multivariate Analysis of Variance) al fine di trovare eventuali variazioni dovute ai fattori profondità, stagione e transetto. Per ogni specie è stata valutata la sex ratio. Il metodo Bhattacharya ha permesso di determinare le classi di età e la loro abbondanza. In ultimo la relazione peso-lunghezza è stata ricavata separatamente per gli individui maschi e femmine al fine di determinare il tipo di crescita per ogni sesso.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il trasporto marittimo è una delle modalità più utilizzate soprattutto per la movimentazione di grandi volumi di prodotti tra i continenti in quanto è a basso costo, sicuro e meno inquinante rispetto ad altri mezzi di movimentazione. Ai giorni nostri è responsabile di circa l’80% del commercio globale (in volume di carichi trasportati). Il settore del trasporto marittimo ha avuto una lunga tradizione di pianificazione manuale effettuata da progettisti esperti.
 L’obiettivo principale di questa trattazione è stato quello di implementare un modello matematico lineare (MILP, Mixed-Integer Linear Programming Model) per l’ottimizzazione delle rotte marittime nell’ambito del mercato orto-frutticolo che si sviluppa nel bacino del Mediterraneo (problema di Ship-Scheduling). Il modello fornito in questa trattazione è un valido strumento di supporto alle decisioni che può utilizzare uno spedizioniere nell’ambito della pianificazione delle rotte marittime della flotta di navi in suo possesso. Consente di determinare l’insieme delle rotte ottimali che devono essere svolte da un insieme di vettori al fine di massimizzare il profitto complessivo dello spedizioniere, generato nell’arco di tempo considerato. Inoltre, permette di ottenere, per ogni nave considerata, la ripartizione ottimale della merce (carico ottimale).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a prospective study conducted at the IRCCS Istituto delle Scienze Neurologiche di Bologna is presented. The aim was to investigate the brain functional connectivity of a cohort of patients (N=23) suffering from persistent olfactory dysfunction after SARS-CoV-2 infection (Post-COVID-19 syndrome), as compared to a matching group of healthy controls (N=26). In particular, starting from individual resting state functional-MRI data, different analytical approaches were adopted in order to find potential alterations in the connectivity patterns of patients’ brains. Analyses were conducted both at a whole-brain level and with a special focus on brain regions involved in the processing of olfactory stimuli (Olfactory Network). Statistical correlations between functional connectivity alterations and the results of olfactory and neuropsychological tests were investigated, to explore the associations with cognitive processes. The three approaches implemented for the analysis were the seed-based correlation analysis, the group-level Independent Component analysis and a graph-theoretical analysis of brain connectivity. Due to the relative novelty of such approaches, many implementation details and methodologies are not standardized yet and represent active research fields. Seed-based and group-ICA analyses’ results showed no statistically significant differences between groups, while relevant alterations emerged from those of the graph-based analysis. In particular, patients’ olfactory sub-graph appeared to have a less pronounced modular structure compared to the control group; locally, a hyper-connectivity of the right thalamus was observed in patients, with significant involvement of the right insula and hippocampus. Results of an exploratory correlation analysis showed a positive correlation between the graphs global modularity and the scores obtained in olfactory tests and negative correlations between the thalamus hyper-connectivity and memory tests scores.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this thesis work a nonlinear model for Interdigitated Capacitors (IDCs) based on ferroelectric materials, is proposed. Through the properties of materials such as Hafnium-Zirconium Oxide (HfZrO2), it is possible to realize tunable radiofrequency (RF) circuits. In particular, the model proposed in this thesis describes the use of an IDC, realized on a High-Resistivity silicon substrate, as a phase shifter for beam-steering applications. The model is obtained starting from already present experimental measurements, through which it is possible to identify a circuit model. The model is tested for both low power values and other power values using Harmonic Balance simulations, which show an excellent convergence of the model up to 40 dBm of input power. Furthermore, an array composed by two patches operating both at 2.55 GHz, which exploits the tunable properties of the HfZrO-based IDC is proposed. At 0dBm the model shows a 47° phase shift with polarization -1 V and 1 V which leads to a 11° steering of the main lobe of the array.