5 resultados para Fokker-Planck, Equação de
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
I contenuti principali trattati in questa tesi sono stati ispirati da due lavori presentati nel corso dello scorso decennio. Il primo lavoro, pubblicato nel 2013 da O. A. Manita e S. V. Shaposhnikov, presenta un nuovo risultato di esistenza di soluzioni, nel senso delle distribuzioni, che siano misure di probabilità per PDE paraboliche non lineari del primo e secondo ordine. Vengono fornite condizioni sufficienti per l’esistenza locale e globale di tale tipo di soluzioni per il problema di Cauchy associato a tali equazioni. Equazioni di tale tipo compaiono in maniera del tutto naturale in diversi ambiti applicativi, fra cui la finanza matematica. Nel lavoro presentato da G. Tataru e T. Fisher per Bloomberg nel 2010, viene proposto un modello stocastico per la modellazione del tasso di cambio di valuta estera al fine di prezzare dei particolari tipi di opzione, le opzioni a barriera, con le quali modelli più classici faticano maggiormente. Nella calibrazione di tale modello, per "fittare" il modello ai prezzi delle opzioni scambiate sul mercato, sorge il problema di risolvere un’equazione alle derivate parziali parabolica non lineare integro-differenziale e che dunque appartiene alla classe di PDE citata precedentemente.
Resumo:
In questa tesi viene presentato il metodo della parametrice, che è utilizzato per trovare la soluzione fondamentale di un operatore parabolico a coefficienti hölderiani. Inizialmente si introduce un operatore modello a coefficienti costanti, la cui soluzione fondamentale verrà utilizzata per approssimare quella dell’operatore parabolico. Questa verrà trovata esplicitamente sotto forma di serie di operatori di convoluzione con la soluzione fondamentale dell’operatore a coefficienti costanti. La prova di convergenza e regolarità della serie si basa sullo studio delle proprietà della soluzione fondamentale dell’operatore a coefficienti costanti e degli operatori di convoluzione utilizzati. Infine, si applicherà il metodo della parametrice per trovare la soluzione fondamentale di un’equazione di Fokker-Planck sempre a coefficienti hölderiani.
Resumo:
In questa tesi si studia l'angiogenesi tumorale, dapprima descrivendo i fenomeni biologici alla base della dinamica cellulare, e successivamente, dopo aver introdotto gli strumenti matematici necessari, sviluppandone un modello seguendo la letteratura esistente basato sulle equazioni differenziali stocastiche e su quelle di Fokker-Planck. Ne vengono infine realizzate simulazioni numeriche.
Resumo:
Il testo contiene nozioni base di probabilità necessarie per introdurre i processi stocastici. Sono trattati infatti nel secondo capitolo i processi Gaussiani, di Markov e di Wiener, l'integrazione stocastica alla Ito, e le equazioni differenziali stocastiche. Nel terzo capitolo viene introdotto il rapporto tra la genetica e la matematica, dove si introduce l'evoluzione la selezione naturale, e altri fattori che portano al cambiamento di una popolazione; vengono anche formulate le leggi basilari per una modellizzazione dell’evoluzione fenotipica. Successivamente si entra più nel dettaglio, e si determina un modello stocastico per le mutazioni, cioè un modello che riesca ad approssimare gli effetti dei fattori di fluttuazione all'interno del processo evolutivo.
Resumo:
General Relativity (GR) is one of the greatest scientific achievements of the 20th century along with quantum theory. Despite the elegance and the accordance with experimental tests, these two theories appear to be utterly incompatible at fundamental level. Black holes provide a perfect stage to point out these difficulties. Indeed, classical GR fails to describe Nature at small radii, because nothing prevents quantum mechanics from affecting the high curvature zone, and because classical GR becomes ill-defined at r = 0 anyway. Rovelli and Haggard have recently proposed a scenario where a negative quantum pressure at the Planck scales stops and reverts the gravitational collapse, leading to an effective “bounce” and explosion, thus resolving the central singularity. This scenario, called Black Hole Fireworks, has been proposed in a semiclassical framework. The purpose of this thesis is twofold: - Compute the bouncing time by means of a pure quantum computation based on Loop Quantum Gravity; - Extend the known theory to a more realistic scenario, in which the rotation is taken into account by means of the Newman-Janis Algorithm.