5 resultados para Fauna - Autotoxaemia - Experimental studies
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The glucaric acid (GLA) has been identified as a “top value-added chemical from biomass” that can be employed for many uses; for instance, it could be a precursor of adipic acid, a monomer of Nylon-6,6. GLA can be synthetized by the oxidation of glucose (GLU), passing through the intermediate gluconic acid (GLO). In recent years, a new process has been sought to obtain GLA in an economic and environmental sustainable way, in order to replace the current use of HNO3 as a stoichiometric oxidant, or electrocatalysis and biochemical synthesis, which show several disadvantages. Thereby, this work is focused on the study of catalysts based on gold nanoparticles supported on activated carbon for the oxidation reaction of GLU to GLA using O2 as an oxidant agent and NaOH as base. The sol-immobilization method leads us to obtain small and well dispersed nanoparticles, characterized by UV-Vis, XRD and TEM techniques. Repeating the reaction on different batches of catalyst, both the synthesis and the reaction were confirmed to be reproducible. The effect of the reaction time feeding GLO as reagent was studied: the results show that the conversion of GLO increases as the reaction time increases; however, the yields of GLA and others increase up to 1 hour, and then they remain constant. In order to obtain information on the catalytic mechanism at the atomistic level, a computational study based on density functional theory and atomistic modeling of the gold nano-catalyst were performed. Highly symmetric (icosahedral and cubo-octahedral) and distorted Au55 nanoparticles have been optimized along with Au(111) and Au(100) surfaces. Distorted structures were found to be more stable than symmetrical ones due to relativistic effects. On these various models the adsorptions of various species involved in the catalysis have been studied, including OH- species, GLU and GLO. The study carried out aims to provide a method for approaching to the study of nanoparticellary catalytic systems.
Resumo:
Reinforced concrete columns might fail because of buckling of the longitudinal reinforcing bar when exposed to earthquake motions. Depending on the hoop stiffness and the length-over-diameter ratio, the instability can be local (in between two subsequent hoops) or global (the buckling length comprises several hoop spacings). To get insight into the topic, an extensive literary research of 19 existing models has been carried out including different approaches and assumptions which yield different results. Finite element fiberanalysis was carried out to study the local buckling behavior with varying length-over-diameter and initial imperfection-over-diameter ratios. The comparison of the analytical results with some experimental results shows good agreement before the post buckling behavior undergoes large deformation. Furthermore, different global buckling analysis cases were run considering the influence of different parameters; for certain hoop stiffnesses and length-over-diameter ratios local buckling was encountered. A parametric study yields an adimensional critical stress in function of a stiffness ratio characterized by the reinforcement configuration. Colonne in cemento armato possono collassare per via dell’instabilità dell’armatura longitudinale se sottoposte all’azione di un sisma. In funzione della rigidezza dei ferri trasversali e del rapporto lunghezza d’inflessione-diametro, l’instabilità può essere locale (fra due staffe adiacenti) o globale (la lunghezza d’instabilità comprende alcune staffe). Per introdurre alla materia, è proposta un’esauriente ricerca bibliografica di 19 modelli esistenti che include approcci e ipotesi differenti che portano a risultati distinti. Tramite un’analisi a fibre e elementi finiti si è studiata l’instabilità locale con vari rapporti lunghezza d’inflessione-diametro e imperfezione iniziale-diametro. Il confronto dei risultati analitici con quelli sperimentali mostra una buona coincidenza fino al raggiungimento di grandi spostamenti. Inoltre, il caso d’instabilità globale è stato simulato valutando l’influenza di vari parametri; per certe configurazioni di rigidezza delle staffe e lunghezza d’inflessione-diametro si hanno ottenuto casi di instabilità locale. Uno studio parametrico ha permesso di ottenere un carico critico adimensionale in funzione del rapporto di rigidezza dato dalle caratteristiche dell’armatura.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
(ITA) L’industria mondiale odierna nel campo dell’architettura e dell’ingegneria si esprime quasi esclusivamente mediante l’approccio BIM, Building Information Modeling. Anche se sviluppato pensando alle nuove costruzioni ed ancora in via di perfezionamento, è entrato prepotentemente nei capitoli normativi di molti stati all’urlo dell“interoperability”. Su questo tema è recente l’interesse e la possibilità di adozione per l’intervento sul costruito, ovvero di Existing Building Information Modelling, eBIM. Gli studi applicativi-sperimentali in questo ambito sono sempre più numerosi e convergono, purtroppo, sulla delicata correlazione tra la gestione del contenuto semantico e la perdita di interoperabilità. Questa tesi si incentra sull’analisi di tale correlazione valutando in particolare l’aspetto metodologico-applicativo dell’arricchimento semantico adottando come caso studio la Torre Nord della Rocca Estense di San Felice sul Panaro. (ENG)Today's global industry in architecture and engineering fields, expresses itself almost entirely focusing on BIM, Building Information Modeling. Even though it was developed taking in consideration new buildings and the ones that are in the process of improvement, it has entered the regulatory chapters of many states in the hymn of "interoperability". Concerning this topic is recent the interest and possibility of adopting a process to intervene on the already built constructions, Existing Building Information Modeling, eBIM. Application-experimental studies in this area are increasingly numerous and unfortunately converge, on the delicate correlation between the management of the semantic content and the loss of interoperability. This thesis focuses on the analysis of this correlation by evaluating in particular the methodological-applicative aspect of semantic enrichment by adopting the North Tower of the Rocca Estense in San Felice sul Panaro as a case study.
Resumo:
In order to increase fertility of agricultural soils, in the framework of circular economy, the use of soil amendments such as biochar, compost, and mixtures of the two, has been implemented in recent years. Although it has been demonstrated that their use can improve the physico-chemical characteristics of soil and plant yield, few studies investigated the effect of these amendments on the soil fauna, and consequently the biological quality of soils. This study aimed to provide information on soil fauna, in particular microarthropods , in plots of an experimental vineyard treated with different soil amendments (biochar, compost, and CB mix, i.e. a mixture of biochar and compost) compared to untreated plots. What emerged from this study is that taxa abundances are significantly increased in compost-treated soil samples compared to untreated and CB mix ones. The value of the QBS-ar index obtained in soil samples treated with CB mix is lower than in samples treated with compost, biochar, and untreated, although the difference was not statistically significant. The physico-chemical soil characteristics are, in general, significantly more favorable in samples treated with CB mix than in the control, although the soil fauna seems to be partially negatively influenced by the treatment with CB mix. In fact, the number of taxa, in particular the number of taxa most adapted to edaphic life, are significantly negatively affected by the application of the CB mix. Concluding, improved physico-chemical characteristics induced by soil amendments do not always correspond to a positive response of the soil fauna, at least with respect to the QBS-ar approach.