11 resultados para Experimental setup

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rationale: Coralligenous habitat is considered the second most important subtidal “hot spot” of species diversity in the Mediterranean Sea after the Posidonia oceanica meadows. It can be defined as a typical Mediterranean biogenic hard bottom, mainly produced by the accumulation of calcareous encrusting algae that, together with other builder organisms, form a multidimensional framework with a high micro-spatial variability. The development of this habitat depends on physical factors (i.e. light, hydrodynamism, nutrients, etc.), but also biologic interactions can play a relevant role in structuring the benthic assemblages. This great environmental heterogeneity allows several different assemblages to coexist in a reduced space. One of the most beautiful is that characterised by the Mediterranean gorgonian Paramuricea clavata (Risso, 1826) that can contribute to above 40% of total biomass of the community and brings significant structural complexity into the coralligenous habitat. In sites moderately exposed to waves and currents, P. clavata can form high-density populations (up to 60 colonies m-2) between 20 – 70 m in depth. Being a suspension feeder, where it forms dense populations, P. clavata plays a significant role in transferring energy from planktonic to benthic system. The effects of the branched colonies of P. clavata could be comparable to those of the forests on land. They can affect the micro scale hydrodynamism and light, promoting or inhibiting the growth of other species. Unfortunately, gorgonians are threatened by several anthropogenic disturbance factors (i.e. fishing, pollution, tourism) and by climatic anomalies, linked to the global changes, that are responsible of thermal stress, development of mucilage and enhanced pathogens activity, leading to mass mortality events in last decades. Till now, the possible effects of gorgonian forest loss are largely unknown. Our goal was to analyse the ecological role of these sea fan forests on the coralligenous benthic assemblages. Experimental setup and main results: The influence of P. clavata in the settlement and recruitment of epibenthic organisms was analysed by a field experiment carried out in two randomly selected places: Tavolara island and Portofino promontory. The experiment consisted in recreate the presence and absence of the gorgonian forest on recruitment panels, arranged in four plots per type (forested and non-forested), interspersed each other, and deployed at the same depth. On every forested panel 3 gorgonian colonies about 20 cm height were grafted with the use of Eppendorf tubes and epoxy resin bicomponent simulating a density of 190 sea fans per m-2. This density corresponds to a mean biomass of 825 g DW m-2,3 which is of the same order of magnitude of the natural high-density populations. After about 4 months, the panels were collected and analysed in laboratory in order to estimate the percent cover of all the species that have colonized the substrata. The gorgonian forest effects were tested by multivariate and univariate permutational analyses of the variance (PERMANOVA). Recruited assemblages largely differed between the two study sites, probably due to different environmental conditions including water quality and turbidity. On overall, the presence of P. clavata reduced the settlement and recruitment of several algae: the shadow caused by the gorgonian might reduce light availability and therefore their growth. This effect might be greater in places where the waters are on average more clear, since at Portofino it is less visible and could be masked by the high turbidity of the water. The same pattern was registered for forams, more abundant outside gorgonian forest, probably linked with algal distribution, shadowing effect or alimentary competition. The last one hypothesis could be valid also for serpulids polychaetes that growth mainly on non-forested panels. An opposite trend, was showed by a species of bryozoan and by an hydroid that is facilitated by the presence of P. clavata, probably because it attenuates irradiance level and hydrodynamism. Species diversity was significantly reduced by the presence of P. clavata forests at both sites. This seems in contrast with what we expected, but the result may be influenced by the large algal component on non-forested panels. The analysis confirmed the presence of differences in the species diversity among plots and between sites respectively due to natural high variability of the coralligenous system and to different local environment conditions. The reduction of species diversity due to the presence of gorgonians appeared related to a worst evenness rather than to less species richness. With our experiment it is demonstrated that the presence of P. clavata forests can significantly alter local coralligenous assemblages patterns, promoting or inhibiting the recruitment of some species, modifying trophic relationships and adding heterogeneity and complexity to the habitat. Moreover, P. clavata could have a stabilising effect on the coralligenous assemblages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work of this thesis is on the implementation of a variable stiffness joint antagonistically actuated by a couple of twisted-string actuator (TSA). This type of joint is possible to be applied in the field of robotics, like UB Hand IV (the anthropomorphic robotic hand developed by University of Bologna). The purposes of the activities are to build the joint dynamic model and simultaneously control the position and stiffness. Three different control approaches (Feedback linearization, PID, PID+Feedforward) are proposed and validated in simulation. To improve the properties of joint stiffness, a joint with elastic element is taken into account and discussed. To the end, the experimental setup that has been developed for the experimental validation of the proposed control approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present thesis work proposes a new physical equivalent circuit model for a recently proposed semiconductor transistor, a 2-drain MSET (Multiple State Electrostatically Formed Nanowire Transistor). It presents a new software-based experimental setup that has been developed for carrying out numerical simulations on the device and on equivalent circuits. As of 2015, we have already approached the scaling limits of the ubiquitous CMOS technology that has been in the forefront of mainstream technological advancement, so many researchers are exploring different ideas in the realm of electrical devices for logical applications, among them MSET transistors. The idea that underlies MSETs is that a single multiple-terminal device could replace many traditional transistors. In particular a 2-drain MSET is akin to a silicon multiplexer, consisting in a Junction FET with independent gates, but with a split drain, so that a voltage-controlled conductive path can connect either of the drains to the source. The first chapter of this work presents the theory of classical JFETs and its common equivalent circuit models. The physical model and its derivation are presented, the current state of equivalent circuits for the JFET is discussed. A physical model of a JFET with two independent gates has been developed, deriving it from previous results, and is presented at the end of the chapter. A review of the characteristics of MSET device is shown in chapter 2. In this chapter, the proposed physical model and its formulation are presented. A listing for the SPICE model was attached as an appendix at the end of this document. Chapter 3 concerns the results of the numerical simulations on the device. At first the research for a suitable geometry is discussed and then comparisons between results from finite-elements simulations and equivalent circuit runs are made. Where points of challenging divergence were found between the two numerical results, the relevant physical processes are discussed. In the fourth chapter the experimental setup is discussed. The GUI-based environments that allow to explore the four-dimensional solution space and to analyze the physical variables inside the device are described. It is shown how this software project has been structured to overcome technical challenges in structuring multiple simulations in sequence, and to provide for a flexible platform for future research in the field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present thesis we address the problem of detecting and localizing a small spherical target with characteristic electrical properties inside a volume of cylindrical shape, representing female breast, with MWI. One of the main works of this project is to properly extend the existing linear inversion algorithm from planar slice to volume reconstruction; results obtained, under the same conditions and experimental setup are reported for the two different approaches. Preliminar comparison and performance analysis of the reconstruction algorithms is performed via numerical simulations in a software-created environment: a single dipole antenna is used for illuminating the virtual breast phantom from different positions and, for each position, the corresponding scattered field value is registered. Collected data are then exploited in order to reconstruct the investigation domain, along with the scatterer position, in the form of image called pseudospectrum. During this process the tumor is modeled as a dielectric sphere of small radius and, for electromagnetic scattering purposes, it's treated as a point-like source. To improve the performance of reconstruction technique, we repeat the acquisition for a number of frequencies in a given range: the different pseudospectra, reconstructed from single frequency data, are incoherently combined with MUltiple SIgnal Classification (MUSIC) method which returns an overall enhanced image. We exploit multi-frequency approach to test the performance of 3D linear inversion reconstruction algorithm while varying the source position inside the phantom and the height of antenna plane. Analysis results and reconstructed images are then reported. Finally, we perform 3D reconstruction from experimental data gathered with the acquisition system in the microwave laboratory at DIFA, University of Bologna for a recently developed breast-phantom prototype; obtained pseudospectrum and performance analysis for the real model are reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors is essential in performing localization. This makes the time of arrival (ToA) an important piece of information to retrieve from the AE signal. Generally, this is determined using statistical methods such as the Akaike Information Criterion (AIC) which is particularly prone to errors in the presence of noise. And given that the structures of interest are surrounded with harsh environments, a way to accurately estimate the arrival time in such noisy scenarios is of particular interest. In this work, two new methods are presented to estimate the arrival times of AE signals which are based on Machine Learning. Inspired by great results in the field, two models are presented which are Deep Learning models - a subset of machine learning. They are based on Convolutional Neural Network (CNN) and Capsule Neural Network (CapsNet). The primary advantage of such models is that they do not require the user to pre-define selected features but only require raw data to be given and the models establish non-linear relationships between the inputs and outputs. The performance of the models is evaluated using AE signals generated by a custom ray-tracing algorithm by propagating them on an aluminium plate and compared to AIC. It was found that the relative error in estimation on the test set was < 5% for the models compared to around 45% of AIC. The testing process was further continued by preparing an experimental setup and acquiring real AE signals to test on. Similar performances were observed where the two models not only outperform AIC by more than a magnitude in their average errors but also they were shown to be a lot more robust as compared to AIC which fails in the presence of noise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis work has been developed in collaboration between the Department of Physics and Astronomy of the University of Bologna and the IRCCS Rizzoli Orthopedic Institute during an internship period. The study aims to investigate the sensitivity of single-sided NMR in detecting structural differences of the articular cartilage tissue and their correlation with mechanical behavior. Suitable cartilage indicators for osteoarthritis (OA) severity (e.g., water and proteoglycans content, collagen structure) were explored through four NMR parameters: T2, T1, D, and Slp. Structural variations of the cartilage among its three layers (i.e., superficial, middle, and deep) were investigated performing several NMR pulses sequences on bovine knee joint samples using the NMR-MOUSE device. Previously, cartilage degradation studies were carried out, performing tests in three different experimental setups. The monitoring of the parameters and the best experimental setup were determined. An NMR automatized procedure based on the acquisition of these quantitative parameters was implemented, tested, and used for the investigation of the layers of twenty bovine cartilage samples. Statistical and pattern recognition analyses on these parameters have been performed. The results obtained from the analyses are very promising: the discrimination of the three cartilage layers shows very good results in terms of significance, paving the way for extensive use of NMR single-sided devices for biomedical applications. These results will be also integrated with analyses of tissue mechanical properties for a complete evaluation of cartilage changes throughout OA disease. The use of low-priced and mobile devices towards clinical applications could concern the screening of diseases related to cartilage tissue. This could have a positive impact both economically (including for underdeveloped countries) and socially, providing screening possibilities to a large part of the population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The High Energy Rapid Modular Ensemble of Satellites (HERMES) is a new mission concept involving the development of a constellation of six CubeSats in low Earth orbit with new miniaturized instruments that host a hybrid Silicon Drift Detector/GAGG:Ce based system for X-ray and γ-ray detection, aiming to monitor high-energy cosmic transients, such as Gamma Ray Bursts and the electromagnetic counterparts of gravitational wave events. The HERMES constellation will also operate together with the Australian-Italian SpIRIT mission, which will house a HERMES-like detector. The HERMES pathfinder mini-constellation, consisting of six satellites plus SpIRIT, is likely to be launched in 2023. The HERMES detectors are based on the heritage of the Italian ReDSoX collaboration, with joint design and production by INFN-Trieste and Fondazione Bruno Kessler, and the involvement of several Italian research institutes and universities. An application-specific, low-noise, low-power integrated circuit (ASIC) called LYRA was conceived and designed for the HERMES readout electronics. My thesis project focuses on the ground calibrations of the first HERMES and SpIRIT flight detectors, with a performance assessment and characterization of the detectors. The first part of this work addresses measurements and experimental tests on laboratory prototypes of the HERMES detectors and their front-end electronics, while the second part is based on the design of the experimental setup for flight detector calibrations and related functional tests for data acquisition, as well as the development of the calibration software. In more detail, the calibration parameters (such as the gain of each detector channel) are determined using measurements with radioactive sources, performed at different operating temperatures between -20°C and +20°C by placing the detector in a suitable climate chamber. The final part of the thesis involves the analysis of the calibration data and a discussion of the results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural Language Processing has always been one of the most popular topics in Artificial Intelligence. Argument-related research in NLP, such as argument detection, argument mining and argument generation, has been popular, especially in recent years. In our daily lives, we use arguments to express ourselves. The quality of arguments heavily impacts the effectiveness of our communications with others. In professional fields, such as legislation and academic areas, arguments of good quality play an even more critical role. Therefore, argument generation with good quality is a challenging research task that is also of great importance in NLP. The aim of this work is to investigate the automatic generation of arguments with good quality, according to the given topic, stance and aspect (control codes). To achieve this goal, a module based on BERT [17] which could judge an argument's quality is constructed. This module is used to assess the quality of the generated arguments. Another module based on GPT-2 [19] is implemented to generate arguments. Stances and aspects are also used as guidance when generating arguments. After combining all these models and techniques, the ranks of the generated arguments could be acquired to evaluate the final performance. This dissertation describes the architecture and experimental setup, analyzes the results of our experimentation, and discusses future directions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mixing is a fundamental unit operation in the pharmaceutical industry to ensure consistent product quality across different batches. It is usually carried out in mechanically stirred tanks, with a large variety of designs according to the process requirements. A key aspect of pharmaceutical manufacturing is the extensive and meticulous cleaning of the vessels between runs to prevent the risk of contamination. Single-use reactors represent an increasing trend in the industry since they do not require cleaning and sterilization, reducing the need for utilities such as steam to sterilize equipment and the time between production batches. In contrast to traditional stainless steel vessels, single-use reactors consist of a plastic bag used as a vessel and disposed of after use. This thesis aims to characterize the fluid dynamics features and the mixing performance of a commercially available single-use reactor. The characterization employs a combination of various experimental techniques. The analysis starts with the visual observation of the liquid behavior inside the vessel, focusing on the vortex shape evolution at different impeller speeds. The power consumption is then measured using a torque meter to quantify the power number. Particle Image Velocimetry (PIV) is employed to investigate local fluid dynamics properties such as mean flow field and mean and rms velocity profiles. The same experimental setup of PIV is exploited for another optical measurement technique, the Planar Laser-Induced Fluorescence (PLIF). The PLIF measurements complete the characterization of the reactor with the qualitative visualization of the turbulent flow and the quantitative assessment of the system performance through the mixing time. The results confirm good mixing performances for the single-use reactor over the investigated impeller speeds and reveal that the filling volume plays a significant role in the fluid dynamics of the system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Improving heat transfer is a critical area of ​​research in various fields such as thermal engineering, energy conversion and aeronautical engineering. The aim of this thesis is to present the design, construction and testing of an experimental setup for the study of heat transfer enhancement in a turbulent boundary layer using cross-flow pulsed jets. The set-up is designed to generate and control pulsed jets, measure heat transfer and acquire all parameters related to wind tunnel flow and is also capable of varying the parameters of the pulsed jets, such as frequency, amplitude and the duty cycle, in order to study the effects on the increase in heat transfer. The thesis describes the design phases, the construction process and the final successful testing of the plant. The test results verify the functionality and accuracy of the set-up and ensure that it can be used to perform a full experimental campaign to investigate heat transfer enhancement using cross-flow pulsed jets in a turbulent layer boundary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrochemical hydrogen loading is a technique used to produce and study the hydrogenation in metals starting from a liquid solution containing water. It is a possible alternative to another, well-established technique which loads hydrogen starting from its gas phase. In this work, the electrochemical method is used to understand the fundamental thermodynamics of hydrogen loading in constraint systems such as thin films on substrates, and possibly distinguish the role of interfaces, stresses and microstructure during the hydrogenation process. The systems under study are thin films of Pd, Mg/Pd, and Ti/Mg multilayers. Possible future technological applications may be in the field of hydrogen storage and hydrogen sensors. Towards the end, the experimental setup is modified by introducing an automatic relay. This change leads to improvements in the data analysis and in the attainable information on the kinetics of the systems.