14 resultados para Distributed non-coherent shared memory
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In questa tesi sono stati apportati due importanti contributi nel campo degli acceleratori embedded many-core. Abbiamo implementato un runtime OpenMP ottimizzato per la gestione del tasking model per sistemi a processori strettamente accoppiati in cluster e poi interconnessi attraverso una network on chip. Ci siamo focalizzati sulla loro scalabilità e sul supporto di task di granularità fine, come è tipico nelle applicazioni embedded. Il secondo contributo di questa tesi è stata proporre una estensione del runtime di OpenMP che cerca di prevedere la manifestazione di errori dati da fenomeni di variability tramite una schedulazione efficiente del carico di lavoro.
Resumo:
In this thesis, a tube-based Distributed Economic Predictive Control (DEPC) scheme is presented for a group of dynamically coupled linear subsystems. These subsystems are components of a large scale system and control inputs are computed based on optimizing a local economic objective. Each subsystem is interacting with its neighbors by sending its future reference trajectory, at each sampling time. It solves a local optimization problem in parallel, based on the received future reference trajectories of the other subsystems. To ensure recursive feasibility and a performance bound, each subsystem is constrained to not deviate too much from its communicated reference trajectory. This difference between the plan trajectory and the communicated one is interpreted as a disturbance on the local level. Then, to ensure the satisfaction of both state and input constraints, they are tightened by considering explicitly the effect of these local disturbances. The proposed approach averages over all possible disturbances, handles tightened state and input constraints, while satisfies the compatibility constraints to guarantee that the actual trajectory lies within a certain bound in the neighborhood of the reference one. Each subsystem is optimizing a local arbitrary economic objective function in parallel while considering a local terminal constraint to guarantee recursive feasibility. In this framework, economic performance guarantees for a tube-based distributed predictive control (DPC) scheme are developed rigorously. It is presented that the closed-loop nominal subsystem has a robust average performance bound locally which is no worse than that of a local robust steady state. Since a robust algorithm is applying on the states of the real (with disturbances) subsystems, this bound can be interpreted as an average performance result for the real closed-loop system. To this end, we present our outcomes on local and global performance, illustrated by a numerical example.
Resumo:
L'obiettivo di questa tesi è studiare la fattibilità dello studio della produzione associata ttH del bosone di Higgs con due quark top nell'esperimento CMS, e valutare le funzionalità e le caratteristiche della prossima generazione di toolkit per l'analisi distribuita a CMS (CRAB versione 3) per effettuare tale analisi. Nel settore della fisica del quark top, la produzione ttH è particolarmente interessante, soprattutto perchè rappresenta l'unica opportunità di studiare direttamente il vertice t-H senza dover fare assunzioni riguardanti possibili contributi dalla fisica oltre il Modello Standard. La preparazione per questa analisi è cruciale in questo momento, prima dell'inizio del Run-2 dell'LHC nel 2015. Per essere preparati a tale studio, le implicazioni tecniche di effettuare un'analisi completa in un ambito di calcolo distribuito come la Grid non dovrebbero essere sottovalutate. Per questo motivo, vengono presentati e discussi un'analisi dello stesso strumento CRAB3 (disponibile adesso in versione di pre-produzione) e un confronto diretto di prestazioni con CRAB2. Saranno raccolti e documentati inoltre suggerimenti e consigli per un team di analisi che sarà eventualmente coinvolto in questo studio. Nel Capitolo 1 è introdotta la fisica delle alte energie a LHC nell'esperimento CMS. Il Capitolo 2 discute il modello di calcolo di CMS e il sistema di analisi distribuita della Grid. Nel Capitolo 3 viene brevemente presentata la fisica del quark top e del bosone di Higgs. Il Capitolo 4 è dedicato alla preparazione dell'analisi dal punto di vista degli strumenti della Grid (CRAB3 vs CRAB2). Nel capitolo 5 è presentato e discusso uno studio di fattibilità per un'analisi del canale ttH in termini di efficienza di selezione.
Resumo:
Con il presente studio si è inteso analizzare l’impatto dell’utilizzo di una memoria di traduzione (TM) e del post-editing (PE) di un output grezzo sul livello di difficoltà percepita e sul tempo necessario per ottenere un testo finale di alta qualità. L’esperimento ha coinvolto sei studenti, di madrelingua italiana, del corso di Laurea Magistrale in Traduzione Specializzata dell’Università di Bologna (Vicepresidenza di Forlì). I partecipanti sono stati divisi in tre coppie, a ognuna delle quali è stato assegnato un estratto di comunicato stampa in inglese. Per ogni coppia, ad un partecipante è stato chiesto di tradurre il testo in italiano usando la TM all’interno di SDL Trados Studio 2011. All’altro partecipante è stato chiesto di fare il PE completo in italiano dell’output grezzo ottenuto da Google Translate. Nei casi in cui la TM o l’output non contenevano traduzioni (corrette), i partecipanti avrebbero potuto consultare Internet. Ricorrendo ai Think-aloud Protocols (TAPs), è stato chiesto loro di riflettere a voce alta durante lo svolgimento dei compiti. È stato quindi possibile individuare i problemi traduttivi incontrati e i casi in cui la TM e l’output grezzo hanno fornito soluzioni corrette; inoltre, è stato possibile osservare le strategie traduttive impiegate, per poi chiedere ai partecipanti di indicarne la difficoltà attraverso interviste a posteriori. È stato anche misurato il tempo impiegato da ogni partecipante. I dati sulla difficoltà percepita e quelli sul tempo impiegato sono stati messi in relazione con il numero di soluzioni corrette rispettivamente fornito da TM e output grezzo. È stato osservato che usare la TM ha comportato un maggior risparmio di tempo e che, al contrario del PE, ha portato a una riduzione della difficoltà percepita. Il presente studio si propone di aiutare i futuri traduttori professionisti a scegliere strumenti tecnologici che gli permettano di risparmiare tempo e risorse.
Resumo:
Following the internationalization of contemporary higher education, academic institutions based in non-English speaking countries are increasingly urged to produce contents in English to address international prospective students and personnel, as well as to increase their attractiveness. The demand for English translations in the institutional academic domain is consequently increasing at a rate exceeding the capacity of the translation profession. Resources for assisting non-native authors and translators in the production of appropriate texts in L2 are therefore required in order to help academic institutions and professionals streamline their translation workload. Some of these resources include: (i) parallel corpora to train machine translation systems and multilingual authoring tools; and (ii) translation memories for computer-aided tools. The purpose of this study is to create and evaluate reference resources like the ones mentioned in (i) and (ii) through the automatic sentence alignment of a large set of Italian and English as a Lingua Franca (ELF) institutional academic texts given as equivalent but not necessarily parallel (i.e. translated). In this framework, a set of aligning algorithms and alignment tools is examined in order to identify the most profitable one(s) in terms of accuracy and time- and cost-effectiveness. In order to determine the text pairs to align, a sample is selected according to document length similarity (characters) and subsequently evaluated in terms of extent of noisiness/parallelism, alignment accuracy and content leverageability. The results of these analyses serve as the basis for the creation of an aligned bilingual corpus of academic course descriptions, which is eventually used to create a translation memory in TMX format.
Resumo:
L’obiettivo del progetto di tesi svolto è quello di realizzare un servizio di livello middleware dedicato ai dispositivi mobili che sia in grado di fornire il supporto per l’offloading di codice verso una infrastruttura cloud. In particolare il progetto si concentra sulla migrazione di codice verso macchine virtuali dedicate al singolo utente. Il sistema operativo delle VMs è lo stesso utilizzato dal device mobile. Come i precedenti lavori sul computation offloading, il progetto di tesi deve garantire migliori performance in termini di tempo di esecuzione e utilizzo della batteria del dispositivo. In particolare l’obiettivo più ampio è quello di adattare il principio di computation offloading a un contesto di sistemi distribuiti mobili, migliorando non solo le performance del singolo device, ma l’esecuzione stessa dell’applicazione distribuita. Questo viene fatto tramite una gestione dinamica delle decisioni di offloading basata, non solo, sullo stato del device, ma anche sulla volontà e/o sullo stato degli altri utenti appartenenti allo stesso gruppo. Per esempio, un primo utente potrebbe influenzare le decisioni degli altri membri del gruppo specificando una determinata richiesta, come alta qualità delle informazioni, risposta rapida o basata su altre informazioni di alto livello. Il sistema fornisce ai programmatori un semplice strumento di definizione per poter creare nuove policy personalizzate e, quindi, specificare nuove regole di offloading. Per rendere il progetto accessibile ad un più ampio numero di sviluppatori gli strumenti forniti sono semplici e non richiedono specifiche conoscenze sulla tecnologia. Il sistema è stato poi testato per verificare le sue performance in termini di mecchanismi di offloading semplici. Successivamente, esso è stato anche sottoposto a dei test per verificare che la selezione di differenti policy, definite dal programmatore, portasse realmente a una ottimizzazione del parametro designato.
Resumo:
La programmazione aggregata è un paradigma che supporta la programmazione di sistemi di dispositivi, adattativi ed eventualmente a larga scala, nel loro insieme -- come aggregati. L'approccio prevalente in questo contesto è basato sul field calculus, un calcolo formale che consente di definire programmi aggregati attraverso la composizione funzionale di campi computazionali, creando i presupposti per la specifica di pattern di auto-organizzazione robusti. La programmazione aggregata è attualmente supportata, in modo più o meno parziale e principalmente per la simulazione, da DSL dedicati (cf., Protelis), ma non esistono framework per linguaggi mainstream finalizzati allo sviluppo di applicazioni. Eppure, un simile supporto sarebbe auspicabile per ridurre tempi e sforzi d'adozione e per semplificare l'accesso al paradigma nella costruzione di sistemi reali, nonché per favorire la ricerca stessa nel campo. Il presente lavoro consiste nello sviluppo, a partire da un prototipo della semantica operazionale del field calculus, di un framework per la programmazione aggregata in Scala. La scelta di Scala come linguaggio host nasce da motivi tecnici e pratici. Scala è un linguaggio moderno, interoperabile con Java, che ben integra i paradigmi ad oggetti e funzionale, ha un sistema di tipi espressivo, e fornisce funzionalità avanzate per lo sviluppo di librerie e DSL. Inoltre, la possibilità di appoggiarsi, su Scala, ad un framework ad attori solido come Akka, costituisce un altro fattore trainante, data la necessità di colmare l'abstraction gap inerente allo sviluppo di un middleware distribuito. Nell'elaborato di tesi si presenta un framework che raggiunge il triplice obiettivo: la costruzione di una libreria Scala che realizza la semantica del field calculus in modo corretto e completo, la realizzazione di una piattaforma distribuita Akka-based su cui sviluppare applicazioni, e l'esposizione di un'API generale e flessibile in grado di supportare diversi scenari.
Resumo:
High Performance Computing e una tecnologia usata dai cluster computazionali per creare sistemi di elaborazione che sono in grado di fornire servizi molto piu potenti rispetto ai computer tradizionali. Di conseguenza la tecnologia HPC e diventata un fattore determinante nella competizione industriale e nella ricerca. I sistemi HPC continuano a crescere in termini di nodi e core. Le previsioni indicano che il numero dei nodi arrivera a un milione a breve. Questo tipo di architettura presenta anche dei costi molto alti in termini del consumo delle risorse, che diventano insostenibili per il mercato industriale. Un scheduler centralizzato non e in grado di gestire un numero di risorse cosi alto, mantenendo un tempo di risposta ragionevole. In questa tesi viene presentato un modello di scheduling distribuito che si basa sulla programmazione a vincoli e che modella il problema dello scheduling grazie a una serie di vincoli temporali e vincoli sulle risorse che devono essere soddisfatti. Lo scheduler cerca di ottimizzare le performance delle risorse e tende ad avvicinarsi a un profilo di consumo desiderato, considerato ottimale. Vengono analizzati vari modelli diversi e ognuno di questi viene testato in vari ambienti.
Resumo:
La simulazione è definita come la rappresentazione del comportamento di un sistema o di un processo per mezzo del funzionamento di un altro o, alternativamente, dall'etimologia del verbo “simulare”, come la riproduzione di qualcosa di fittizio, irreale, come se in realtà, lo fosse. La simulazione ci permette di modellare la realtà ed esplorare soluzioni differenti e valutare sistemi che non possono essere realizzati per varie ragioni e, inoltre, effettuare differenti valutazioni, dinamiche per quanto concerne la variabilità delle condizioni. I modelli di simulazione possono raggiungere un grado di espressività estremamente elevato, difficilmente un solo calcolatore potrà soddisfare in tempi accettabili i risultati attesi. Una possibile soluzione, viste le tendenze tecnologiche dei nostri giorni, è incrementare la capacità computazionale tramite un’architettura distribuita (sfruttando, ad esempio, le possibilità offerte dal cloud computing). Questa tesi si concentrerà su questo ambito, correlandolo ad un altro argomento che sta guadagnando, giorno dopo giorno, sempre più rilevanza: l’anonimato online. I recenti fatti di cronaca hanno dimostrato quanto una rete pubblica, intrinsecamente insicura come l’attuale Internet, non sia adatta a mantenere il rispetto di confidenzialità, integrità ed, in alcuni, disponibilità degli asset da noi utilizzati: nell’ambito della distribuzione di risorse computazionali interagenti tra loro, non possiamo ignorare i concreti e molteplici rischi; in alcuni sensibili contesti di simulazione (e.g., simulazione militare, ricerca scientifica, etc.) non possiamo permetterci la diffusione non controllata dei nostri dati o, ancor peggio, la possibilità di subire un attacco alla disponibilità delle risorse coinvolte. Essere anonimi implica un aspetto estremamente rilevante: essere meno attaccabili, in quanto non identificabili.
Resumo:
Al giorno d'oggi il reinforcement learning ha dimostrato di essere davvero molto efficace nel machine learning in svariati campi, come ad esempio i giochi, il riconoscimento vocale e molti altri. Perciò, abbiamo deciso di applicare il reinforcement learning ai problemi di allocazione, in quanto sono un campo di ricerca non ancora studiato con questa tecnica e perchè questi problemi racchiudono nella loro formulazione un vasto insieme di sotto-problemi con simili caratteristiche, per cui una soluzione per uno di essi si estende ad ognuno di questi sotto-problemi. In questo progetto abbiamo realizzato un applicativo chiamato Service Broker, il quale, attraverso il reinforcement learning, apprende come distribuire l'esecuzione di tasks su dei lavoratori asincroni e distribuiti. L'analogia è quella di un cloud data center, il quale possiede delle risorse interne - possibilmente distribuite nella server farm -, riceve dei tasks dai suoi clienti e li esegue su queste risorse. L'obiettivo dell'applicativo, e quindi del data center, è quello di allocare questi tasks in maniera da minimizzare il costo di esecuzione. Inoltre, al fine di testare gli agenti del reinforcement learning sviluppati è stato creato un environment, un simulatore, che permettesse di concentrarsi nello sviluppo dei componenti necessari agli agenti, invece che doversi anche occupare di eventuali aspetti implementativi necessari in un vero data center, come ad esempio la comunicazione con i vari nodi e i tempi di latenza di quest'ultima. I risultati ottenuti hanno dunque confermato la teoria studiata, riuscendo a ottenere prestazioni migliori di alcuni dei metodi classici per il task allocation.
Resumo:
The main objective of my thesis work is to exploit the Google native and open-source platform Kubeflow, specifically using Kubeflow pipelines, to execute a Federated Learning scalable ML process in a 5G-like and simplified test architecture hosting a Kubernetes cluster and apply the largely adopted FedAVG algorithm and FedProx its optimization empowered by the ML platform ‘s abilities to ease the development and production cycle of this specific FL process. FL algorithms are more are and more promising and adopted both in Cloud application development and 5G communication enhancement through data coming from the monitoring of the underlying telco infrastructure and execution of training and data aggregation at edge nodes to optimize the global model of the algorithm ( that could be used for example for resource provisioning to reach an agreed QoS for the underlying network slice) and after a study and a research over the available papers and scientific articles related to FL with the help of the CTTC that suggests me to study and use Kubeflow to bear the algorithm we found out that this approach for the whole FL cycle deployment was not documented and may be interesting to investigate more in depth. This study may lead to prove the efficiency of the Kubeflow platform itself for this need of development of new FL algorithms that will support new Applications and especially test the FedAVG algorithm performances in a simulated client to cloud communication using a MNIST dataset for FL as benchmark.
Resumo:
In this thesis, we state the collision avoidance problem as a vertex covering problem, then we consider a distributed framework in which a team of cooperating Unmanned Vehicles (UVs) aim to solve this optimization problem cooperatively to guarantee collision avoidance between group members. For this purpose, we implement a distributed control scheme based on a robust Set-Theoretic Model Predictive Control ( ST-MPC) strategy, where the problem involves vehicles with independent dynamics but with coupled constraints, to capture required cooperative behavior.
Resumo:
Pervasive and distributed Internet of Things (IoT) devices demand ubiquitous coverage beyond No-man’s land. To satisfy plethora of IoT devices with resilient connectivity, Non-Terrestrial Networks (NTN) will be pivotal to assist and complement terrestrial systems. In a massiveMTC scenario over NTN, characterized by sporadic uplink data reports, all the terminals within a satellite beam shall be served during the short visibility window of the flying platform, thus generating congestion due to simultaneous access attempts of IoT devices on the same radio resource. The more terminals collide, the more average-time it takes to complete an access which is due to the decreased number of successful attempts caused by Back-off commands of legacy methods. A possible countermeasure is represented by Non-Orthogonal Multiple Access scheme, which requires the knowledge of the number of superimposed NPRACH preambles. This work addresses this problem by proposing a Neural Network (NN) algorithm to cope with the uncoordinated random access performed by a prodigious number of Narrowband-IoT devices. Our proposed method classifies the number of colliding users, and for each estimates the Time of Arrival (ToA). The performance assessment, under Line of Sight (LoS) and Non-LoS conditions in sub-urban environments with two different satellite configurations, shows significant benefits of the proposed NN algorithm with respect to traditional methods for the ToA estimation.