5 resultados para Descent

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scopo della tesi è la descrizione di un metodo per il calcolo di minimi di funzionali, basato sulla steepest descent. L'idea principale è quella di considerare un flusso nella direzione opposta al gradiente come soluzione di un problema di Cauchy in spazi di Banach, che sotto l'ipotesi di Palais-Smale permette di determinare minimi. Il metodo viene applicato al problema di denoising e segmentazione in elaborazione di immagini: vengono presentati metodi classici basati sull'equazione del calore, il total variation ed il Perona Malik. Nell'ultimo capitolo il grafico di un'immagine viene considerato come varietà, che induce una metrica sul suo dominio, e viene nuovamente utilizzato il metodo di steepest descent per costruire algoritmi che tengano conto delle caratteristiche geometriche dell'immagine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nella tesi si analizzano le principali fonti del rumore aeronautico, lo stato dell'arte dal punto di vista normativo, tecnologico e procedurale. Si analizza lo stato dell'arte anche riguardo alla classificazione degli aeromobili, proponendo un nuovo indice prestazionale in alternativa a quello indicato dalla metodologia di certificazione (AC36-ICAO) Allo scopo di diminuire l'impatto acustico degli aeromobili in fase di atterraggio, si analizzano col programma INM i benefici di procedure CDA a 3° rispetto alle procedure tradizionali e, di seguito di procedure CDA ad angoli maggiori in termini di riduzione di lunghezza e di area delle isofoniche SEL85, SEL80 e SEL75.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study a polyenergetic and multimaterial model for the breast image reconstruction in Digital Tomosynthesis, taking into consideration the variety of the materials forming the object and the polyenergetic nature of the X-rays beam. The modelling of the problem leads to the resolution of a high-dimensional nonlinear least-squares problem that, due to its nature of inverse ill-posed problem, needs some kind of regularization. We test two main classes of methods: the Levenberg-Marquardt method (together with the Conjugate Gradient method for the computation of the descent direction) and two limited-memory BFGS-like methods (L-BFGS). We perform some experiments for different values of the regularization parameter (constant or varying at each iteration), tolerances and stop conditions. Finally, we analyse the performance of the several methods comparing relative errors, iterations number, times and the qualities of the reconstructed images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il riconoscimento delle condizioni del manto stradale partendo esclusivamente dai dati raccolti dallo smartphone di un ciclista a bordo del suo mezzo è un ambito di ricerca finora poco esplorato. Per lo sviluppo di questa tesi è stata sviluppata un'apposita applicazione, che combinata a script Python permette di riconoscere differenti tipologie di asfalto. L’applicazione raccoglie i dati rilevati dai sensori di movimento integrati nello smartphone, che registra i movimenti mentre il ciclista è alla guida del suo mezzo. Lo smartphone è fissato in un apposito holder fissato sul manubrio della bicicletta e registra i dati provenienti da giroscopio, accelerometro e magnetometro. I dati sono memorizzati su file CSV, che sono elaborati fino ad ottenere un unico DataSet contenente tutti i dati raccolti con le features estratte mediante appositi script Python. A ogni record sarà assegnato un cluster deciso in base ai risultati prodotti da K-means, risultati utilizzati in seguito per allenare algoritmi Supervised. Lo scopo degli algoritmi è riconoscere la tipologia di manto stradale partendo da questi dati. Per l’allenamento, il DataSet è stato diviso in due parti: il training set dal quale gli algoritmi imparano a classificare i dati e il test set sul quale gli algoritmi applicano ciò che hanno imparato per dare in output la classificazione che ritengono idonea. Confrontando le previsioni degli algoritmi con quello che i dati effettivamente rappresentano si ottiene la misura dell’accuratezza dell’algoritmo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep Learning architectures give brilliant results in a large variety of fields, but a comprehensive theoretical description of their inner functioning is still lacking. In this work, we try to understand the behavior of neural networks by modelling in the frameworks of Thermodynamics and Condensed Matter Physics. We approach neural networks as in a real laboratory and we measure the frequency spectrum and the entropy of the weights of the trained model. The stochasticity of the training occupies a central role in the dynamics of the weights and makes it difficult to assimilate neural networks to simple physical systems. However, the analogy with Thermodynamics and the introduction of a well defined temperature leads us to an interesting result: if we eliminate from a CNN the "hottest" filters, the performance of the model remains the same, whereas, if we eliminate the "coldest" ones, the performance gets drastically worst. This result could be exploited in the realization of a training loop which eliminates the filters that do not contribute to loss reduction. In this way, the computational cost of the training will be lightened and more importantly this would be done by following a physical model. In any case, beside important practical applications, our analysis proves that a new and improved modeling of Deep Learning systems can pave the way to new and more efficient algorithms.