5 resultados para Dark chocolate
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The cosmological constant Λ seems to be a not satisfactory explanation of the late-time accelerated expansion of the Universe, for which a number of experimental evidences exist; therefore, it has become necessary in the last years to consider alternative models of dark energy, meant as cause of the accelerated expansion. In the study of dark energy models, it is important to understand which quantities can be determined starting from observational data, without assuming any hypothesis on the cosmological model; such quantities have been determined in Amendola, Kunz et al., 2012. In the same paper it has been further shown that it is possible to estabilish a relation between the model-independent parameters and the anisotropic stress η, which can be also expressed as a combination of the functions appearing in the most general Lagrangian for the scalar-tensor theories, the Horndeski Lagrangian. In the present thesis, the Fisher matrix formalism is used to perform a forecast on the constraints that will be possible to make on the anisotropic stress η in the future, starting from the estimated uncertainties for the galaxy clustering and weak lensing measurements which will be performed by the European Space Agency Euclid mission, to be launched in 2020. Further, constraints coming from supernovae-Ia observations are considered. The forecast is performed for two cases in which (a) η is considered as depending from redshift only and (b) η is constant and equal to one, as in the ΛCDM model.
Resumo:
We have extended the Boltzmann code CLASS and studied a specific scalar tensor dark energy model: Induced Gravity
Resumo:
The last decade has witnessed the establishment of a Standard Cosmological Model, which is based on two fundamental assumptions: the first one is the existence of a new non relativistic kind of particles, i. e. the Dark Matter (DM) that provides the potential wells in which structures create, while the second one is presence of the Dark Energy (DE), the simplest form of which is represented by the Cosmological Constant Λ, that sources the acceleration in the expansion of our Universe. These two features are summarized by the acronym ΛCDM, which is an abbreviation used to refer to the present Standard Cosmological Model. Although the Standard Cosmological Model shows a remarkably successful agreement with most of the available observations, it presents some longstanding unsolved problems. A possible way to solve these problems is represented by the introduction of a dynamical Dark Energy, in the form of the scalar field ϕ. In the coupled DE models, the scalar field ϕ features a direct interaction with matter in different regimes. Cosmic voids are large under-dense regions in the Universe devoided of matter. Being nearby empty of matter their dynamics is supposed to be dominated by DE, to the nature of which the properties of cosmic voids should be very sensitive. This thesis work is devoted to the statistical and geometrical analysis of cosmic voids in large N-body simulations of structure formation in the context of alternative competing cosmological models. In particular we used the ZOBOV code (see ref. Neyrinck 2008), a publicly available void finder algorithm, to identify voids in the Halos catalogues extraxted from CoDECS simulations (see ref. Baldi 2012 ). The CoDECS are the largest N-body simulations to date of interacting Dark Energy (DE) models. We identify suitable criteria to produce voids catalogues with the aim of comparing the properties of these objects in interacting DE scenarios to the standard ΛCDM model, at different redshifts. This thesis work is organized as follows: in chapter 1, the Standard Cosmological Model as well as the main properties of cosmic voids are intro- duced. In chapter 2, we will present the scalar field scenario. In chapter 3 the tools, the methods and the criteria by which a voids catalogue is created are described while in chapter 4 we discuss the statistical properties of cosmic voids included in our catalogues. In chapter 5 the geometrical properties of the catalogued cosmic voids are presented by means of their stacked profiles. In chapter 6 we summarized our results and we propose further developments of this work.
Resumo:
L’Alpha Magnetic Spectrometer (AMS-02) é un rivelatore per raggi cosmici (CR) progettato e costruito da una collaborazione internazionale di 56 istituti e 16 paesi ed installato il 19 Maggio del 2011 sulla Stazione Spaziale Internazionale (ISS). Orbitando intorno alla Terra, AMS-02 sará in grado di studiare con un livello di accuratezza mai raggiunto prima la composizione dei raggi cosmici, esplorando nuove frontiere nella fisica delle particelle, ricercando antimateria primordiale ed evidenze indirette di materia oscura. Durante il mio lavoro di tesi, ho utilizzato il software GALPROP per studiare la propagazione dei CR nella nostra Galassia attraverso il mezzo interstellare (ISM), cercando di individuare un set di parametri in grado di fornire un buon accordo con i dati preliminari di AMS-02. In particolare, mi sono dedicata all’analisi del processo di propagazione di nuclei, studiando i loro flussi e i relativi rapporti. Il set di propagazione ottenuto dall’analisi é stato poi utilizzato per studiare ipotetici flussi da materia oscura e le possibili implicazioni per la ricerca indiretta attraverso AMS-02.
Resumo:
La materia ordinaria copre soli pochi punti percentuali della massa-energia totale dell'Universo, che è invece largamente dominata da componenti “oscure”. Il modello standard usato per descriverle è il modello LambdaCDM. Nonostante esso sembri consistente con la maggior parte dei dati attualmente disponibili, presenta alcuni problemi fondamentali che ad oggi restano irrisolti, lasciando spazio per lo studio di modelli cosmologici alternativi. Questa Tesi mira a studiare un modello proposto recentemente, chiamato “Multi-coupled Dark Energy” (McDE), che presenta interazioni modificate rispetto al modello LambdaCDM. In particolare, la Materia Oscura è composta da due diversi tipi di particelle con accoppiamento opposto rispetto ad un campo scalare responsabile dell'Energia Oscura. L'evoluzione del background e delle perturbazioni lineari risultano essere indistinguibili da quelle del modello LambdaCDM. In questa Tesi viene presentata per la prima volta una serie di simulazioni numeriche “zoomed”. Esse presentano diverse regioni con risoluzione differente, centrate su un singolo ammasso di interesse, che permettono di studiare in dettaglio una singola struttura senza aumentare eccessivamente il tempo di calcolo necessario. Un codice chiamato ZInCo, da me appositamente sviluppato per questa Tesi, viene anch'esso presentato per la prima volta. Il codice produce condizioni iniziali adatte a simulazioni cosmologiche, con differenti regioni di risoluzione, indipendenti dal modello cosmologico scelto e che preservano tutte le caratteristiche dello spettro di potenza imposto su di esse. Il codice ZInCo è stato usato per produrre condizioni iniziali per una serie di simulazioni numeriche del modello McDE, le quali per la prima volta mostrano, grazie all'alta risoluzione raggiunta, che l'effetto di segregazione degli ammassi avviene significativamente prima di quanto stimato in precedenza. Inoltre, i profili radiale di densità ottenuti mostrano un appiattimento centrale nelle fasi iniziali della segregazione. Quest'ultimo effetto potrebbe aiutare a risolvere il problema “cusp-core” del modello LambdaCDM e porre limiti ai valori dell'accoppiamento possibili.