6 resultados para BRST quantization
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il formalismo Mathai-Quillen (MQ) è un metodo per costruire la classe di Thom di un fibrato vettoriale attraverso una forma differenziale di profilo Gaussiano. Lo scopo di questa tesi è quello di formulare una nuova rappresentazione della classe di Thom usando aspetti geometrici della quantizzazione Batalin-Vilkovisky (BV). Nella prima parte del lavoro vengono riassunti i formalismi BV e MQ entrambi nel caso finito dimensionale. Infine sfrutteremo la trasformata di Fourier “odd" considerando la forma MQ come una funzione definita su un opportuno spazio graduato.
Resumo:
In questo lavoro ci si propone di studiare la quantizzazione del campo vettoriale, massivo e non massivo, in uno spazio-tempo di Rindler, considerando in particolare i gauge di Feynman e assiale. Le equazioni del moto vengono risolte esplicitamente in entrambi i casi; sotto opportune condizioni, è stato inoltre possibile trovare una base completa e ortonormale di soluzioni delle equazioni di campo in termini di modi normali di Fulling. Si è poi analizzata la quantizzazione dei campi vettoriali espressi in questa base.
Resumo:
In questa tesi abbiamo studiato la quantizzazione di una teoria di gauge di forme differenziali su spazi complessi dotati di una metrica di Kaehler. La particolarità di queste teorie risiede nel fatto che esse presentano invarianze di gauge riducibili, in altre parole non indipendenti tra loro. L'invarianza sotto trasformazioni di gauge rappresenta uno dei pilastri della moderna comprensione del mondo fisico. La caratteristica principale di tali teorie è che non tutte le variabili sono effettivamente presenti nella dinamica e alcune risultano essere ausiliarie. Il motivo per cui si preferisce adottare questo punto di vista è spesso il fatto che tali teorie risultano essere manifestamente covarianti sotto importanti gruppi di simmetria come il gruppo di Lorentz. Uno dei metodi più usati nella quantizzazione delle teorie di campo con simmetrie di gauge, richiede l'introduzione di campi non fisici detti ghosts e di una simmetria globale e fermionica che sostituisce l'iniziale invarianza locale di gauge, la simmetria BRST. Nella presente tesi abbiamo scelto di utilizzare uno dei più moderni formalismi per il trattamento delle teorie di gauge: il formalismo BRST Lagrangiano di Batalin-Vilkovisky. Questo metodo prevede l'introduzione di ghosts per ogni grado di riducibilità delle trasformazioni di gauge e di opportuni “antifields" associati a ogni campo precedentemente introdotto. Questo formalismo ci ha permesso di arrivare direttamente a una completa formulazione in termini di path integral della teoria quantistica delle (p,0)-forme. In particolare esso permette di dedurre correttamente la struttura dei ghost della teoria e la simmetria BRST associata. Per ottenere questa struttura è richiesta necessariamente una procedura di gauge fixing per eliminare completamente l'invarianza sotto trasformazioni di gauge. Tale procedura prevede l'eliminazione degli antifields in favore dei campi originali e dei ghosts e permette di implementare, direttamente nel path integral condizioni di gauge fixing covarianti necessari per definire correttamente i propagatori della teoria. Nell'ultima parte abbiamo presentato un’espansione dell’azione efficace (euclidea) che permette di studiare le divergenze della teoria. In particolare abbiamo calcolato i primi coefficienti di tale espansione (coefficienti di Seeley-DeWitt) tramite la tecnica dell'heat kernel. Questo calcolo ha tenuto conto dell'eventuale accoppiamento a una metrica di background cosi come di un possibile ulteriore accoppiamento alla traccia della connessione associata alla metrica.
Resumo:
The scalar Schrödinger equation models the probability density distribution for a particle to be found in a point x given a certain potential V(x) forming a well with respect to a fixed energy level E_0. Formally two real inversion points a,b exist such that V(a)=V(b)=E_0, V(x)<0 in (a,b) and V(x)>0 for xb. Following the work made by D.Yafaev and performing a WKB approximation we obtain solutions defined on specific intervals. The aim of the first part of the thesis is to find a condition on E, which belongs to a neighbourhood of E_0, such that it is an eigenvalue of the Schrödinger operator, obtaining in this way global and linear dependent solutions in L2. In quantum mechanics this condition is known as Bohr-Sommerfeld quantization. In the second part we define a Schrödinger operator referred to two potential wells and we study the quantization conditions on E in order to have a global solution in L2xL2 with respect to the mutual position of the potentials. In particular their wells can be disjoint,can have an intersection, can be included one into the other and can have a single point intersection. For these cases we refer to the works of A.Martinez, S. Fujiié, T. Watanabe, S. Ashida.
Resumo:
We present a new quantum description for the Oppenheimer-Snyder model of gravitational collapse of a ball of dust. Starting from the geodesic equation for dust in spherical symmetry, we introduce a time-independent Schrödinger equation for the radius of the ball. The resulting spectrum is similar to that of the Hydrogen atom and Newtonian gravity. However, the non-linearity of General Relativity implies that the ground state is characterised by a principal quantum number proportional to the square of the ADM mass of the dust. For a ball with ADM mass much larger than the Planck scale, the collapse is therefore expected to end in a macroscopically large core and the singularity predicted by General Relativity is avoided. Mathematical properties of the spectrum are investigated and the ground state is found to have support essentially inside the gravitational radius, which makes it a quantum model for the matter core of Black Holes. In fact, the scaling of the ADM mass with the principal quantum number agrees with the Bekenstein area law and the corpuscular model of Black Holes. Finally, the uncertainty on the size of the ground state is interpreted within the framework of an Uncertainty Principle.
Resumo:
In the context of perturbative quantum gravity, the first three Seeley-DeWitt coefficients represent the counterterms needed to renormalize the graviton one-loop effective action in $D=4$ dimensions. A standard procedure to compute them is by means of the traditional heat kernel method. However, these coefficients can be studied also from a first quantization perspective through the so-called $\mathcal{N} = 4$ spinning particle model. It relies on four supersymmetries on the worldline and a set of worldline gauge invariances. In the present work, a different worldline model, able to reproduce correctly the Seeley-DeWitt coefficients in arbitrary dimensions, is developed. After a covariant gauge-fixing procedure of the Einstein-Hilbert action with cosmological constant, a worldline representation of the kinetic operators identified by its quadratic approximation is found. This quantum mechanical representation can be presented in different but equivalent forms. Some of these different forms are discussed and their equivalence is verified by deriving the gauge invariant counterterms needed to renormalize quantum gravity with cosmological constant at one-loop.