4 resultados para Autonomous ground robot

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

I vantaggi dell’Industria 4.0 hanno stravolto il manufacturing. Ma cosa vuol dire "Industria 4.0"? Essa è la nuova frontiera del manufacturing, basata su princìpi che seguono i passi avanti dei sistemi IT e della tecnologia. Dunque, i suoi pilastri sono: integrazione, verticale e orizzontale, digitalizzazione e automazione. L’Industria 4.0 coinvolge molte aree della supply chain, dai flussi informativi alla logistica. In essa e nell’intralogistica, la priorità è sviluppare dei sistemi di material handling flessibili, automatizzati e con alta prontezza di risposta. Il modello ideale è autonomo, in cui i veicoli fanno parte di una flotta le cui decisioni sono rese decentralizzate grazie all'alta connettività e alla loro abilità di collezionare dati e scambiarli rapidamente nel cloud aziendale.Tutto ciò non sarebbe raggiungibile se ci si affidasse a un comune sistema di trasporto AGV, troppo rigido e centralizzato. La tesi si focalizza su un tipo di material handlers più flessibile e intelligente: gli Autonomous Mobile Robots. Grazie alla loro intelligenza artificiale e alla digitalizzazione degli scambi di informazioni, interagiscono con l’ambiente per evitare ostacoli e calcolare il percorso ottimale. Gli scenari dell’ambiente lavorativo determinano perdite di tempo nel tragitto dei robot e sono queste che dovremo studiare. Nella tesi, i vantaggi apportati dagli AMR, come la loro decentralizzazione delle decisioni, saranno introdotti mediante una literature review e poi l’attenzione verterà sull’analisi di ogni scenario di lavoro. Fondamentali sono state le esperienze nel Logistics 4.0 Lab di NTNU, per ricreare fisicamente alcuni scenari. Inoltre, il software AnyLogic sarà usato per riprodurre e simulare tutti gli scenari rilevanti. I risultati delle simulazioni verranno infine usati per creare un modello che associ ad ogni scenario rilevante una perdita di tempo, attraverso una funzione. Per questo saranno usati software di data analysis come Minitab e MatLab.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Uno dei principali ambiti di ricerca dell’intelligenza artificiale concerne la realizzazione di agenti (in particolare, robot) in grado di aiutare o sostituire l’uomo nell’esecuzione di determinate attività. A tal fine, è possibile procedere seguendo due diversi metodi di progettazione: la progettazione manuale e la progettazione automatica. Quest’ultima può essere preferita alla prima nei contesti in cui occorra tenere in considerazione requisiti quali flessibilità e adattamento, spesso essenziali per lo svolgimento di compiti non banali in contesti reali. La progettazione automatica prende in considerazione un modello col quale rappresentare il comportamento dell’agente e una tecnica di ricerca (oppure di apprendimento) che iterativamente modifica il modello al fine di renderlo il più adatto possibile al compito in esame. In questo lavoro, il modello utilizzato per la rappresentazione del comportamento del robot è una rete booleana (Boolean network o Kauffman network). La scelta di tale modello deriva dal fatto che possiede una semplice struttura che rende agevolmente studiabili le dinamiche tuttavia complesse che si manifestano al suo interno. Inoltre, la letteratura recente mostra che i modelli a rete, quali ad esempio le reti neuronali artificiali, si sono dimostrati efficaci nella programmazione di robot. La metodologia per l’evoluzione di tale modello riguarda l’uso di tecniche di ricerca meta-euristiche in grado di trovare buone soluzioni in tempi contenuti, nonostante i grandi spazi di ricerca. Lavori precedenti hanno gia dimostrato l’applicabilità e investigato la metodologia su un singolo robot. Lo scopo di questo lavoro è quello di fornire prova di principio relativa a un insieme di robot, aprendo nuove strade per la progettazione in swarm robotics. In questo scenario, semplici agenti autonomi, interagendo fra loro, portano all’emergere di un comportamento coordinato adempiendo a task impossibili per la singola unità. Questo lavoro fornisce utili ed interessanti opportunità anche per lo studio delle interazioni fra reti booleane. Infatti, ogni robot è controllato da una rete booleana che determina l’output in funzione della propria configurazione interna ma anche dagli input ricevuti dai robot vicini. In questo lavoro definiamo un task in cui lo swarm deve discriminare due diversi pattern sul pavimento dell’arena utilizzando solo informazioni scambiate localmente. Dopo una prima serie di esperimenti preliminari che hanno permesso di identificare i parametri e il migliore algoritmo di ricerca, abbiamo semplificato l’istanza del problema per meglio investigare i criteri che possono influire sulle prestazioni. E’ stata così identificata una particolare combinazione di informazione che, scambiata localmente fra robot, porta al miglioramento delle prestazioni. L’ipotesi è stata confermata applicando successivamente questo risultato ad un’istanza più difficile del problema. Il lavoro si conclude suggerendo nuovi strumenti per lo studio dei fenomeni emergenti in contesti in cui le reti booleane interagiscono fra loro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis proposes a novel technology in the field of swarm robotics that allows a swarm of robots to sense a virtual environment through virtual sensors. Virtual sensing is a desirable and helpful technology in swarm robotics research activity, because it allows the researchers to efficiently and quickly perform experiments otherwise more expensive and time consuming, or even impossible. In particular, we envision two useful applications for virtual sensing technology. On the one hand, it is possible to prototype and foresee the effects of a new sensor on a robot swarm, before producing it. On the other hand, thanks to this technology it is possible to study the behaviour of robots operating in environments that are not easily reproducible inside a lab for safety reasons or just because physically infeasible. The use of virtual sensing technology for sensor prototyping aims to foresee the behaviour of the swarm enhanced with new or more powerful sensors, without producing the hardware. Sensor prototyping can be used to tune a new sensor or perform performance comparison tests between alternative types of sensors. This kind of prototyping experiments can be performed through the presented tool, that allows to rapidly develop and test software virtual sensors of different typologies and quality, emulating the behaviour of several hardware real sensors. By investigating on which sensors is better to invest, a researcher can minimize the sensors’ production cost while achieving a given swarm performance. Through augmented reality, it is possible to test the performance of the swarm in a desired virtual environment that cannot be set into the lab for physical, logistic or economical reasons. The virtual environment is sensed by the robots through properly designed virtual sensors. Virtual sensing technology allows a researcher to quickly carry out real robots experiment in challenging scenarios without all the required hardware and environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progetto SHERPA. Installazione e configurazione del Navigaton Stack su Rover terrestre. Utilizzo e configurazione di LMS151 Sick. Utilizzo e configurazione di Asus Xtion Pro. Progettazione di software per la localizzazione e l'inseguimento di persone tramite camera di profondita.