5 resultados para Automatic extraction of lexical information

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ontology design and population -core aspects of semantic technologies- re- cently have become fields of great interest due to the increasing need of domain-specific knowledge bases that can boost the use of Semantic Web. For building such knowledge resources, the state of the art tools for ontology design require a lot of human work. Producing meaningful schemas and populating them with domain-specific data is in fact a very difficult and time-consuming task. Even more if the task consists in modelling knowledge at a web scale. The primary aim of this work is to investigate a novel and flexible method- ology for automatically learning ontology from textual data, lightening the human workload required for conceptualizing domain-specific knowledge and populating an extracted schema with real data, speeding up the whole ontology production process. Here computational linguistics plays a fundamental role, from automati- cally identifying facts from natural language and extracting frame of relations among recognized entities, to producing linked data with which extending existing knowledge bases or creating new ones. In the state of the art, automatic ontology learning systems are mainly based on plain-pipelined linguistics classifiers performing tasks such as Named Entity recognition, Entity resolution, Taxonomy and Relation extraction [11]. These approaches present some weaknesses, specially in capturing struc- tures through which the meaning of complex concepts is expressed [24]. Humans, in fact, tend to organize knowledge in well-defined patterns, which include participant entities and meaningful relations linking entities with each other. In literature, these structures have been called Semantic Frames by Fill- 6 Introduction more [20], or more recently as Knowledge Patterns [23]. Some NLP studies has recently shown the possibility of performing more accurate deep parsing with the ability of logically understanding the structure of discourse [7]. In this work, some of these technologies have been investigated and em- ployed to produce accurate ontology schemas. The long-term goal is to collect large amounts of semantically structured information from the web of crowds, through an automated process, in order to identify and investigate the cognitive patterns used by human to organize their knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to evaluate the efficacy of the application WebBootCaT to create specialised corpora automatically, investigating the translation of articles of association from Italian into English. The first section reflects on the relevant literature and proposes the utility of corpora for translators. The second section discusses the methodology employed, and the third section analyses the results obtained and comments on how language professionals could possibly exploit the application to its full. The fourth section provides a few concrete usage examples of the thus built corpora, to then conclude that WebBootCaT is a genuinely powerful tool that could be implemented by professional translators in order to save time and improve their translations in the long term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inferior alveolar nerve (IAN) lies within the mandibular canal, named inferior alveolar canal in literature. The detection of this nerve is important during maxillofacial surgeries or for creating dental implants. The poor quality of cone-beam computed tomography (CBCT) and computed tomography (CT) scans and/or bone gaps within the mandible increase the difficulty of this task, posing a challenge to human experts who are going to manually detect it and resulting in a time-consuming task.Therefore this thesis investigates two methods to automatically detect the IAN: a non-data driven technique and a deep-learning method. The latter tracks the IAN position at each frame leveraging detections obtained with the deep neural network CenterNet, fined-tuned for our task, and temporal and spatial information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real living cell is a complex system governed by many process which are not yet fully understood: the process of cell differentiation is one of these. In this thesis work we make use of a cell differentiation model to develop gene regulatory networks (Boolean networks) with desired differentiation dynamics. To accomplish this task we have introduced techniques of automatic design and we have performed experiments using various differentiation trees. The results obtained have shown that the developed algorithms, except the Random algorithm, are able to generate Boolean networks with interesting differentiation dynamics. Moreover, we have presented some possible future applications and developments of the cell differentiation model in robotics and in medical research. Understanding the mechanisms involved in biological cells can gives us the possibility to explain some not yet understood dangerous disease, i.e the cancer. Le cellula è un sistema complesso governato da molti processi ancora non pienamente compresi: il differenziamento cellulare è uno di questi. In questa tesi utilizziamo un modello di differenziamento cellulare per sviluppare reti di regolazione genica (reti Booleane) con dinamiche di differenziamento desiderate. Per svolgere questo compito abbiamo introdotto tecniche di progettazione automatica e abbiamo eseguito esperimenti utilizzando vari alberi di differenziamento. I risultati ottenuti hanno mostrato che gli algoritmi sviluppati, eccetto l'algoritmo Random, sono in grado di poter generare reti Booleane con dinamiche di differenziamento interessanti. Inoltre, abbiamo presentato alcune possibili applicazioni e sviluppi futuri del modello di differenziamento in robotica e nella ricerca medica. Capire i meccanismi alla base del funzionamento cellulare può fornirci la possibilità di spiegare patologie ancora oggi non comprese, come il cancro.