3 resultados para 1556

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reinforced concrete columns might fail because of buckling of the longitudinal reinforcing bar when exposed to earthquake motions. Depending on the hoop stiffness and the length-over-diameter ratio, the instability can be local (in between two subsequent hoops) or global (the buckling length comprises several hoop spacings). To get insight into the topic, an extensive literary research of 19 existing models has been carried out including different approaches and assumptions which yield different results. Finite element fiberanalysis was carried out to study the local buckling behavior with varying length-over-diameter and initial imperfection-over-diameter ratios. The comparison of the analytical results with some experimental results shows good agreement before the post buckling behavior undergoes large deformation. Furthermore, different global buckling analysis cases were run considering the influence of different parameters; for certain hoop stiffnesses and length-over-diameter ratios local buckling was encountered. A parametric study yields an adimensional critical stress in function of a stiffness ratio characterized by the reinforcement configuration. Colonne in cemento armato possono collassare per via dell’instabilità dell’armatura longitudinale se sottoposte all’azione di un sisma. In funzione della rigidezza dei ferri trasversali e del rapporto lunghezza d’inflessione-diametro, l’instabilità può essere locale (fra due staffe adiacenti) o globale (la lunghezza d’instabilità comprende alcune staffe). Per introdurre alla materia, è proposta un’esauriente ricerca bibliografica di 19 modelli esistenti che include approcci e ipotesi differenti che portano a risultati distinti. Tramite un’analisi a fibre e elementi finiti si è studiata l’instabilità locale con vari rapporti lunghezza d’inflessione-diametro e imperfezione iniziale-diametro. Il confronto dei risultati analitici con quelli sperimentali mostra una buona coincidenza fino al raggiungimento di grandi spostamenti. Inoltre, il caso d’instabilità globale è stato simulato valutando l’influenza di vari parametri; per certe configurazioni di rigidezza delle staffe e lunghezza d’inflessione-diametro si hanno ottenuto casi di instabilità locale. Uno studio parametrico ha permesso di ottenere un carico critico adimensionale in funzione del rapporto di rigidezza dato dalle caratteristiche dell’armatura.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi si trattano alcune delle proprietà dei coefficienti binomiali, il cui nome deriva dal fatto che uno dei principali utilizzi di tali coefficienti è proprio nel Teorema binomiale di Newton, che permette di calcolare in modo esplicito lo sviluppo di un generico binomio con esponente naturale. I coefficienti binomiali si ricavano anche dal noto Triangolo di Tartaglia, che prende nome dal matematico Niccolò Fontana (1490-1557), il quale lo introdusse in Italia nel 1556 nella sua opera "General trattato di numeri et misure". Tuttavia, esso era già noto agli indiani e ai cinesi nel XIV secolo. Successivamente, in Francia e nel mondo anglosassone, tale triangolo prese anche il nome di Triangolo di Pascal, quando nel 1654 il matematico francese pubblicò il libro "Le triangle Aritmetique", interamente dedicato alle sue proprietà. I coefficienti binomiali, inoltre, trovano largo uso in calcolo combinatorio, ossia in quella branca della matematica che si occupa di contare i modi di raggruppare, secondo determinate regole, gli elementi di un insieme finito di oggetti. Dunque, per quanto la definizione stessa di coefficienti binomiali sia semplice, essendo un rapporto di interi fattoriali, in realtà essi trovano ampio utilizzo in vari ambiti e proprio per questo suscitano un notevole interesse ed hanno svariate applicazioni, giocando un ruolo fondamentale in parti della matematica come la combinatoria. In questa tesi, oltre alle proprietà più note, sono contenuti anche alcuni collegamenti tra i coefficienti binomiali e i polinomi di variabile naturale, nonché, nell'ultima parte, applicazioni alle differenze finite di progressioni geometriche.