163 resultados para parametrice equazioni integro-differenziali
Resumo:
Questo lavoro ha l’obbiettivo di analizzare i principi che stanno alla base della plasmonica, partendo dallo studio dei plasmoni di superficie fino ad arrivare alle loro applicazioni. La prima parte di questa tesi riguarda l’aspetto teorico. Essendo essenzialmente eccitazioni collettive degli elettroni nell'interfaccia fra un conduttore ed un isolante, descritti da onde elettromagnetiche evanescenti, questi plasmoni superficiali, o polaritoni plasmonici di superficie (SPP), vengono studiati partendo dalle equazioni di Maxwell. Viene spiegato come questi SPP nascano dall’accoppiamento dei campi elettromagnetici con le oscillazioni degli elettroni del materiale conduttore e, utilizzando l’equazione dell’onda, si descrivono le loro proprietà in singola interfaccia e in sistemi multistrato. Il quinto capitolo analizza le metodologie di eccitazione di SPP. Sono descritte varie tecniche per l’accoppiamento di fase, per accennare poi a eccitazioni di SPP in guide d’onda, tramite fibra ottica. L’ultimo capitolo della prima parte è dedicato alla seconda tipologia di plasmoni: i plasmoni di superficie localizzati (LSP). Questi sono eccitazioni a seguito dell’accoppiamento fra elettroni di conduzione di nanoparticelle metalliche e il campo elettromagnetico ma che, a differenza dei SPP, non si propagano. Viene esplorata la fisica dei LSP trattando prima le interazioni delle nanoparticelle con le onde elettromagnetiche, poi descrivendo i processi di risonanza in una varietà di particelle differenti in numero, forma, dimensione e ambiente di appartenenza. La seconda parte della tesi riguarda invece alcune applicazioni. Vengono proposti esempi di controllo della propagazione di SPP nel contesto delle guide d’onda, analizzando l’indirizzamento di SPP su superfici planari e spiegando come le guide d’onda di nanoparticelle metalliche possano essere utilizzate per trasferire energia. Infine, viene introdotta la teoria di Mie per la diffusione e l’assorbimento della luce da parte di nanoparticelle metalliche, per quanto riguarda la colorazione apparente, con esempi sulla colorazione vitrea, come la famosa coppa di Licurgo.
Resumo:
Nel lavoro si dimostrano il Teorema della Divergenza e il Teorema di Stokes e le sue generalizzazioni a una curva chiusa di ordine k e a una varietà M, n-dimensionale, orientata con bordo. Successivamente si espongono due applicazioni alla fisica: l'elettromagnetismo e la formula del rotore. Nel primo caso si mostra come applicando il Teorema alle leggi di Biot-Savarat e di Faraday si ottengono le equazioni di Maxwell; nel secondo invece si osserva come il rotore rappresenti la densità superficiale di circuitazione.
Resumo:
In questa tesi viene affrontato il problema della stabilità delle strutture stellari da un punto di vista relativistico. La stella è approssimata ad un fluido perfetto a simmetria sferica, e le equazioni che ne governano la struttura vengono ricavate grazie alle risoluzione delle equazioni di campo della relatività generale in questo caso particolare. L'approssimazione di fluido perfetto permette anche di ricavare un'equazione di stato che lega densità di energia e pressione tramite un parametro, detto parametro di rigidità. Un'analisi del comportamento della materia al variare della densità consente di stabilire l'andamento di questo parametro, mentre uno studio delle piccole oscillazioni radiali della stella permette di stabilire quali sono i valori del parametro che consentono un equilibrio stabile. La stabilità risulta possibile in due differenti intervalli di densità, che corrispondono ai due tipici stadi finali dell'evoluzione stellare: nana bianca e stella di neutroni. Grazie alle equazioni che descrivono la struttura stellare è possibile stabilire, nei due intervalli di densità, quale sia il valore che la massa della stella non può superare: si ricavano il limite di Chandrasekhar e il limite di Oppenheimer-Volkoff. Infine viene mostrato come la relatività generale imponga un limite assoluto alla stabilità di una distribuzione di materia, sostenuta da una qualsiasi forza della natura: superato questo confine, la materia non può fare altro che collassare in un buco nero.
Resumo:
Si fornisce un'introduzione al formalismo geometrico della meccanica classica e quantistica, studiando dapprima lo spazio delle fasi come varietà simplettica ricavando le equazioni di Hamilton. Si descrivono in seguito gli strumenti necessari per operare in uno spazio di Hilbert, i quali risultano più complessi di quelli utilizzati per descrivere lo spazio delle fasi classico. In particolare notiamo l'esigenza di definire anche una struttura riemanniana sugli spazi complessi per poter ivi definire il prodotto scalare, le parentesi e i commutatori simmetrici.
Resumo:
Il modello di Bondi rappresenta il modello di accrescimento più semplice, in quanto studia l'accrescimento su un BH isolato immerso in una distribuzione di gas infinita. In questa semplice trattazione puramente idrodinamica vengono trascurati molti aspetti importanti, come ad esempio il momento angolare, il campo magnetico, gli effetti relativistici, ecc. L'obiettivo di questa Tesi consiste nell'affinare tale modello aggiungendo alcune nuove componenti. In particolare, vogliamo studiare come queste nuove componenti possano influire sul tasso di accrescimento della materia. Dopo una Introduzione (Capitolo 1), nel Capitolo 2 viene presentato il modello di Bondi originale, con lo scopo di ricostruire il procedimento matematico che porta alla soluzione e di verificare il funzionamento del codice numerico scritto per la soluzione dell'equazione di Bondi finale. Tuttavia, il modello di accrescimento sferico stazionario tratta il potenziale gravitazionale di un oggetto puntiforme isolato, mentre in questo lavoro di Tesi si vogliono considerare i BH che si trovano al centro delle galassie. Pertanto, nel Capitolo 3 è stata rivisitata la trattazione matematica del problema di Bondi aggiungendo alle equazioni il potenziale gravitazionale prodotto da una galassia con profilo di densità descritto dal modello di Hernquist. D'altronde, ci si aspetta che l'energia potenziale gravitazionale liberata nell'accrescimento, almeno parzialmente, venga convertita in radiazione. In regime otticamente sottile, nell'interazione tra la radiazione e la materia, domina l'electron scattering, il che permette di estendere in maniera rigorosa la trattazione matematica del problema di Bondi prendendo in considerazione gli effetti dovuti alla pressione di radiazione. Infatti, in un sistema a simmetria sferica la forza esercitata dalla pressione di radiazione segue l'andamento "1/r^2", il che comporta una riduzione della forza gravitazionale della stessa quantità per tutti i raggi. Tale argomento rappresenta l'oggetto di studio del Capitolo 4. L'idea originale alla base di questo lavoro di Tesi, che consiste nell'unire i due modelli sopra descritti (ossia il modello di Bondi con la galassia e il modello di Bondi con feedback radiativo) in un unico modello, è stata sviluppata nel Capitolo 5. Utilizzando questo nuovo modello abbiamo cercato di determinare delle "ricette" per la stima del tasso di accrescimento, da utilizzare nell'analisi dei dati osservativi oppure da considerare nell'ambito delle simulazioni numeriche. Infine, nel Capitolo 6 abbiamo valutato alcune applicazioni del modello sviluppato: come una possibile soluzione al problema di sottoluminosità dei SMBH al centro di alcune galassie dell'universo locale; per la stima della massa del SMBH imponendo la condizione di equilibrio idrostatico; un possibile impiego dei risultati nell'ambito dei modelli semi-analitici di coevoluzione di galassie e SMBH al centro di esse.
Resumo:
L’elaborato si propone di trattare i principali meccanismi di produzione dell’energia studiati in ambito astrofisico. L’ambiente di lavoro `e molto vasto e spazia dal “microscopico”, come le reazioni termonucleari, al “macroscopico”, come le contrazioni termodinamiche, le Supernovae, e i dischi di accrescimento. Non essendo possibile trattare tutti i meccanismi esistenti sono stati tralasciati i processi di conversione di energia, come ad esempio l’emissione di Sincrotrone, la Bremsstrahlung e l’effetto Compton Inverso, pur tenendo presente che, visti dall’esterno del sistema dove essi si verificano, tali processi possono essere considerati meccanismi che producono fotoni a spese dell’energia interna del sistema. Data la brevità del testo ci limiteremo ad affrontare solo i meccanismi relativi agli interni stellari, tralasciando per`o lo stadio finale di Supernovae. Una completa impostazione del problema richiederebbe la derivazione formale delle Equazioni fondamentali degli interni stellari che costituiscono l’insieme completo delle equazioni che governano la struttura interna delle stelle, il modo in cui l’energia viene trasportata dal core alla superficie, l’opacità e i tassi di produzione di energia. Si assume tale derivazione come già affrontata, riferendosi alle parti dei testi [5] e [6] in bibliografia che trattano questi argomenti.
Resumo:
In questo lavoro si affronta l'argomento dei fermioni di Dirac nel grafene, si procederà compiendo nel primo capitolo un'analisi alla struttura reticolare del materiale per poi ricostruirne, sfruttando l'approssimazione di tigth-binding, le funzioni d'onda delle particelle che vivono negli orbitali del carbonio sistemate nella struttura reticolare e ricavarne grazie al passaggio in seconda quantizzazione l'Hamiltoniana. Nel secondo capitolo si ricavano brevemente le equazioni di Dirac e dopo una piccola nota storica si discutono le equazioni di Weyl arrivando all'Hamiltoniana dei fermioni a massa nulla mostrando la palese uguaglianza alla relazione di dispersione delle particelle del grafene. Nel terzo capitolo si commentano le evidenze sperimentali ottenute dalla ASPEC in cui si manifesta per le basse energie uno spettro lineare, dando così conferma alla teoria esposta nei capitoli precedenti.
Resumo:
Una teoria di unificazione ha il notevole compito di fornire un modello in grado di unificare le forze fondamentali della natura in una sola. Storicamente uno dei primi tentativi è rappresentato dal modello di Kaluza, che propone una formulazione unificata di gravità ed elettromagnetismo. In 4 dimensioni il campo gravitazionale e il campo elettromagnetico sono entità nettamente separate. Tale dualismo può essere superato estendendo la teoria della Relatività Generale ad uno spaziotempo a 5 dimensioni. Se alle consuete 4 si aggiunge una quinta dimensione spaziale, allora si dimostra che la gravità e l’elettromagnetismo possono essere visti come la manifestazione di un unico campo di forza, che è interpretabile in termini della geometria dello spaziotempo a 5 dimensioni. Nonostante i suoi intrinseci limiti, il modello di Kaluza rappresenta comunque un punto di partenza per molte altre teorie di campo unificato più moderne e a più di 5 dimensioni. L'obiettivo è di sviluppare le linee fondamentali del modello di Kaluza. Preliminarmente si riportano i risultati principali dell'elettromagnetismo e della Relatività Generale, dato che il modello si formula a partire da questi. Si stabilisce la condizione di cilindro, secondo cui le quantità fisiche non subiscono variazioni nella quinta dimensione. Si ipotizza un ansatz per il tensore metrico 5D e si scrivono le equazioni di campo unitario e della geodetica, come estensioni a 5 dimensioni di quelle in 4. Si dimostra che il campo unitario in 4 dimensioni si separa nel campo scalare costante, nel campo elettromagnetico e nel campo gravitazionale. Le componenti quadridimensionali della geodetica 5D riconducono a quella 4D e alle leggi del moto 4D in presenza dei campi gravitazionale ed elettromagnetico. Inoltre si interpreta la carica elettrica come la quinta componente della velocità covariante 5D.
Resumo:
Nella tesi vengono introdotte le varietà differenziabili per poter trattare un problema di immergibilità di varietà differenziabili. Viene data una dimostrazione di un teorema di Whitney nel caso di varietà differenziabili compatte. Il teorema stabilisce che per una varietà compatta di dimensione n esiste un embedding nello spazio euclideo di dimensione 2n+1. Whitney stesso ha migliorato questo risultato, dimostrando che una varietà differenziabile può essere immersa tramite un embedding nello spazio euclideo di dimensione 2n. Nella tesi vengono dati alcuni esempi di questo miglioramento del teorema.
Resumo:
In questo lavoro viene presentato un recente modello di buco nero che implementa le proprietà quantistiche di quelle regioni dello spaziotempo dove non possono essere ignorate, pena l'implicazione di paradossi concettuali e fenomenologici. In suddetto modello, la regione di spaziotempo dominata da comportamenti quantistici si estende oltre l'orizzonte del buco nero e suscita un'inversione, o più precisamente un effetto tunnel, della traiettoria di collasso della stella in una traiettoria di espansione simmetrica nel tempo. L'inversione impiega un tempo molto lungo per chi assiste al fenomeno a grandi distanze, ma inferiore al tempo di evaporazione del buco nero tramite radiazione di Hawking, trascurata e considerata come un effetto dissipativo da studiarsi in un secondo tempo. Il resto dello spaziotempo, fuori dalla regione quantistica, soddisfa le equazioni di Einstein. Successivamente viene presentata la teoria della Gravità Quantistica a Loop (LQG) che permetterebbe di studiare la dinamica della regione quantistica senza far riferimento a una metrica classica, ma facendo leva sul contenuto relazionale del tessuto spaziotemporale. Il campo gravitazionale viene riformulato in termini di variabili hamiltoniane in uno spazio delle fasi vincolato e con simmetria di gauge, successivamente promosse a operatori su uno spazio di Hilbert legato a una vantaggiosa discretizzazione dello spaziotempo. La teoria permette la definizione di un'ampiezza di transizione fra stati quantistici di geometria spaziotemporale, applicabile allo studio della regione quantistica nel modello di buco nero proposto. Infine vengono poste le basi per un calcolo in LQG dell'ampiezza di transizione del fenomeno di rimbalzo quantistico all'interno del buco nero, e di conseguenza per un calcolo quantistico del tempo di rimbalzo nel riferimento di osservatori statici a grande distanza da esso, utile per trattare a posteriori un modello che tenga conto della radiazione di Hawking e, auspicatamente, fornisca una possibile risoluzione dei problemi legati alla sua esistenza.
Resumo:
In questa tesi sono state applicate le tecniche del gruppo di rinormalizzazione funzionale allo studio della teoria quantistica di campo scalare con simmetria O(N) sia in uno spaziotempo piatto (Euclideo) che nel caso di accoppiamento ad un campo gravitazionale nel paradigma dell'asymptotic safety. Nel primo capitolo vengono esposti in breve alcuni concetti basilari della teoria dei campi in uno spazio euclideo a dimensione arbitraria. Nel secondo capitolo si discute estensivamente il metodo di rinormalizzazione funzionale ideato da Wetterich e si fornisce un primo semplice esempio di applicazione, il modello scalare. Nel terzo capitolo è stato studiato in dettaglio il modello O(N) in uno spaziotempo piatto, ricavando analiticamente le equazioni di evoluzione delle quantità rilevanti del modello. Quindi ci si è specializzati sul caso N infinito. Nel quarto capitolo viene iniziata l'analisi delle equazioni di punto fisso nel limite N infinito, a partire dal caso di dimensione anomala nulla e rinormalizzazione della funzione d'onda costante (approssimazione LPA), già studiato in letteratura. Viene poi considerato il caso NLO nella derivative expansion. Nel quinto capitolo si è introdotto l'accoppiamento non minimale con un campo gravitazionale, la cui natura quantistica è considerata a livello di QFT secondo il paradigma di rinormalizzabilità dell'asymptotic safety. Per questo modello si sono ricavate le equazioni di punto fisso per le principali osservabili e se ne è studiato il comportamento per diversi valori di N.
Resumo:
Scopo di questa tesi è la trattazione del Principio dei lavori virtuali, il quale si inserisce nel contesto della meccanica classica dei sistemi di punti materiali. Tale principio viene utilizzato per affrontare problemi di statica quali l'equilibrio di un sistema meccanico, ma risulta centrale anche nel contesto più generale della dinamica. Per quanto riguarda i problemi di statica, il principio dei lavori virtuali è un metodo alternativo alle equazioni cardinali, che rappresentano una condizione necessaria e sufficiente per l'equilibrio dei soli corpi rigidi, quindi si occupano di un contesto più limitato.
Resumo:
I gruppi risolubili sono tra gli argomenti più studiati nella storia dell'algebra, per la loro ricchezza di proprietà e di applicazioni. Questa tesi si prefigge l'obiettivo di presentare tali gruppi, in quanto argomento che esula da quelli usualmente trattati nei corsi fondamentali, ma che diventa fondamentale in altri campi di studio come la teoria delle equazioni. Il nome di tale classe di gruppi deriva infatti dalla loro correlazione con la risolubilità per formule generali delle equazioni di n-esimo grado. Si ha infatti dalla teoria di Galois che un'equazione di grado n è risolubile per radicali se e solo se il suo gruppo di Galois è risolubile. Da questo spunto di prima e grande utilità, la teoria dei gruppi risolubili ha preso una propria strada, tanto da poter caratterizzare tali gruppi senza dover passare dalla teoria di Galois. Qui viene infatti presentata la teoria dei gruppi risolubili senza far uso di tale teoria: nel primo capitolo esporrò le definizioni fondamentali necessarie per lo studio dei gruppi risolubili, la chiusura del loro insieme rispetto a sottogruppi, quozienti, estensioni e prodotti, e la loro caratterizzazione attraverso la serie derivata, oltre all'esempio più caratteristico tra i gruppi non risolubili, che è quello del gruppo simmetrico. Nel secondo capitolo sono riportati alcuni esempi e controesempi nel caso di gruppi non finiti, tra i quali vi sono il gruppo delle isometrie del piano e i gruppi liberi. Infine nel terzo capitolo viene approfondito il caso dei gruppi risolubili finiti, con alcuni esempi, come i p-gruppi, con un’analisi della risolubilità dei gruppi finiti con ordine minore o uguale a 100.
Resumo:
Lo scopo di questa tesi è illustrare il paradigma dell’inflazione cosmologica descrivendo in particolare la teoria dell’inflazione R^2. In una prima sezione si fa riferimento al contesto della relatività generale per descrivere l’universo su larga scala. Vengono prese in esame le ipotesi utilizzate per ottenere il modello standard della cosmologia e le principali proprietà che da esso possono essere ricavate. Si focalizza quindi l’analisi sulla descrizione dell’universo primordiale da cui traggono origine le ipotesi dell’esistenza dell’epoca inflazionaria esponendo, in particolare, come questa teoria riesca a risolvere i problemi della piattezza e dell’orizzonte cosmologico. Viene poi descritto come la fase di espansione esponenziale richiesta da queste ipotesi possa essere generata dalla presenza di un campo scalare φ specifico. Particolare risalto è dato alla descrizione dell’approssimazione di ”slow-roll” ed ai vincoli sul numero di ”e-folding”. Una seconda sezione mostra l’applicazione dell’analisi generale esposta in precedenza al modello di inflazione di Starobinsky. A tal fine sono descritte le caratteristiche delle teorie della gravità f(R) con particolare attenzione alle trasformazioni conformi e scelta del frame. Attraverso l’esposizione delle equazioni di campo cosmologiche nella teoria della gravità R^2 si mostra come il processo di espansione inflazionaria dell’universo nelle sue fasi iniziali possa essere descritto da un comportamento non standard della gravità ad alte energie. Sono riportati i risultati principali ottenuti con questa teoria nel frame di Jordan e in quello di Einstein. La conclusione descrive in sintesi lo stato attuale delle osservazioni sperimentali e come queste abbiano un legame stretto con la teoria delle perturbazioni cosmologiche. In particolare, presentando i risultati ottenuti nel contesto dell’inflazione R^2 ed esponendo gli ultimi dati raccolti dall’esperimento Planck, si analizza come il modello sia in accordo con i dati sperimentali attualmente disponibili.
Resumo:
Questa tesi si occupa della teoria spettrale di certi sistemi di equazioni ordinarie chiamati oscillatori non commutativi. Dopo avere introdotto i fondamenti necessari per la teoria vengono dimostrati alcuni teoremi qualitativi sullo spettro di tali sistemi.