382 resultados para valore atteso prezzo equo momenti utilità


Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’idrogeno è un elemento di elevato interesse economico, con una produzione industriale che supera i 55 x 1010 m3/anno e notevoli prospettive di sviluppo delle sue applicazioni. Attualmente l’idrogeno è prodotto principalmente in impianti di larga scala (circa 1000 m3/h) da combustibili fossili attraverso processi di steam reforming ed ossidazione parziale catalitica. Per aumentare la produzione di idrogeno un ruolo fondamentale è svolto dalla reazione di water gas shift (WGS) che abbatte il contenuto di CO, massimizzando la produzione di idrogeno. La reazione è condotta industrialmente in due stadi, operanti ad alta temperatura (HTS, circa 350 °C) e bassa temperatura (LTS, circa 250 °C), utilizzando rispettivamente catalizzatori a base di ferro o rame. Tuttavia, è evidente l’interesse per nuove formulazioni in grado di operare in un unico stadio a temperatura intermedia (MTS), mantenendo le caratteristiche ottimali di attività e stabilità. In questo lavoro di tesi, condotto in collaborazione con AIR LIQUIDE (F), è stato affrontato uno studio della reazione di WGS finalizzato allo sviluppo di nuove formulazioni attive e stabili nell’MTS. In particolare, sono stati sintetizzati precursori idrotalcitici Cu/Zn/Al (contenenti carbonati o silicati), con bassi contenuti di rame (diversamente da quanto riportato in letteratura), modulandone le proprietà chimico-fisiche, l’attività catalitica e la stabilità con il tempo di reazione. Si è osservato come i catalizzatori con minori contenuti di rame ed ottenuti da precursori contenenti carbonati mostrassero un’elevata attività e selettività nell’MTS, raggiungendo valori di conversione del CO analoghi a quelli all’equilibrio termodinamico già a 300 °C, indipendentemente dai valori del rapporto S/DG e del tempo di contatto. Tutti i catalizzatori mostrano un’elevata stabilità con il tempo di reazione, con incrementi del quantitativo del CO in uscita dopo 100h di circa lo 0,7 % v/v. I catalizzatori scaricati dopo le prove catalitiche evidenziano gli effetti dei processi di sinterizzazione (diminuzione dell’area superficiale ed incremento delle dimensioni dei cristalliti), la cui entità diminuisce al diminuire del contenuto di rame. Infine, confrontando l’attività dei migliori catalizzatori preparati in questo lavoro di tesi con quella di uno dei più utilizzati catalizzatori commerciali per la reazione di WGS a bassa temperatura, si sono osservati valori di attività analoghi, raggiungendo quelli di equilibrio per temperature  300°C, ma con una attività significativamente superiore nelle condizioni LTS, soprattutto considerando il valore del tempo di contatto inferiore a quelli comunemente utilizzati negli impianti industriali.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oggetto della tesi di laurea è il recupero di Villa Rasponi a Savignano sul Rubicone, un bene storico complesso composto da elementi di varia natura: architettonici e vegetali, di differente pregio, dalla residenza settecentesca agli annessi agricoli di servizio, al parco. Le funzioni d’uso attuali rarefatte e strettamente comuni a quelle originarie, non sono più proponibili per poter garantire la sopravvivenza e la conservazione del complesso. Questo da un punto di vista puramente economico, per l’impegno in termini finanziari che un sito di tali dimensioni richiede, a livello gestionale e circostanziale. Come intervenire su un manufatto di questa natura, tutelandolo, riqualificandolo dal punto di vista architettonico e paesaggistico e, nello stesso tempo, reinserendolo in maniera attiva in un contesto urbano e territoriale dal quale negli anni si è progressivamente distaccato e isolato, chiudendosi nell’accezione di residenza privata? Il progetto, lavorando a vari livelli e confrontandosi con differenti campi disciplinari, dal restauro di un parco storico “firmato” da Pietro Porcinai, all’inserimento di nuovi elementi architettonici, all’analisi di fattibilità finanziaria, si pone principalmente due obiettivi: 1) da un lato intervenire materialmente sul manufatto restaurando gli edifici, anche attraverso la definizione di funzioni che ne permettano la sopravvivenza, e manutenendo il parco storico. In questo senso l’aspetto su cui si insiste maggiormente è il rispetto e la valorizzazione del complesso villa–parco–giardino-annessi come unicum, che assume pregio nella sua totalità e integrità; 2) dall’altro, tenuto conto delle dimensioni, dell’importanza storica, architettonica, culturale e paesaggistica del sito, il progetto intende estendere la sua valenza anche a un intorno in primo luogo locale e poi più ampio, diventando punto di riferimento e polo attrattivo, così come lo era stato nel passato, all’epoca nella quale in esso viveva la principessa Luisa Murat. Non ci si limita dunque a considerare il caso isolato, ma si tiene conto del fatto che la Villa Rasponi sorge all’interno di un contesto, quello della Romagna, di straordinaria ricchezza e molteplicità di espressioni artistiche, architettoniche, naturalistiche che costituiscono un patrimonio di valore, in gran parte scarsamente conosciuto e per nulla. Da qui l’idea di utilizzare una porzione di paesaggio come vetrina e contenitore di informazioni su tutta l’eredità culturale romagnola, legata ad un nuovo modo di intendere il luogo, come contesto che incarna la rete di significati all’interno dei quali le azioni degli uomini diventano fatti culturali. Il complesso della Villa Rasponi, per le sue connotazioni storiche, paesaggistiche, fisiche e posizionali, diventa la concretizzazione di tale idea. Dunque, una porzione di paesaggio che si fa strumento fisico e concettuale, di comunicazione, per trasmettere, valorizzare e promuovere il patrimonio naturale, architettonico e culturale di tutto il territorio in cui è inserito, diventandone icona e sintesi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La frenetica evoluzione sociale e culturale, data dal crescente e continuo bisogno di conoscenza dell’uomo, ha portato oggi a navigare in un oceano sconfinato di dati e informazioni. Esse assumono una propria peculiare importanza, un valore sia dal punto di vista del singolo individuo, sia all’interno di un contesto sociale e di un settore di riferimento specifico e concreto. La conseguente mutazione dell’interazione e della comunicazione a livello economico della società, ha portato a parlare oggi di economia dell’informazione. In un contesto in cui l’informazione rappresenta la risorsa principale per l’attività di crescita e sviluppo economico, è fondamentale possedere la più adeguata strategia organizzativa per la gestione dei dati grezzi. Questo per permetterne un’efficiente memorizzazione, recupero e manipolazione in grado di aumentare il valore dell’organizzazione che ne fa uso. Un’informazione incompleta o non accurata può portare a valutazioni errate o non ottimali. Ecco quindi la necessità di gestire i dati secondo specifici criteri al fine di creare un proprio vantaggio competitivo. La presente rassegna ha lo scopo di analizzare le tecniche di ottimizzazione di accesso alle basi di dati. La loro efficiente implementazione è di fondamentale importanza per il supporto e il corretto funzionamento delle applicazioni che ne fanno uso: devono garantire un comportamento performante in termini di velocità, precisione e accuratezza delle informazioni elaborate. L’attenzione si focalizzerà sulle strutture d’indicizzazione di tipo gerarchico: gli alberi di ricerca. Verranno descritti sia gli alberi su dati ad una dimensione, sia quelli utilizzati nel contesto di ricerche multi dimensionali (come, ad esempio, punti in uno spazio). L’ingente sforzo per implementare strutture di questo tipo ha portato gli sviluppatori a sfruttare i principi di ereditarietà e astrazione della programmazione ad oggetti al fine di ideare un albero generalizzato che inglobasse in sé tutte le principali caratteristiche e funzioni di una struttura di indicizzazione gerarchica, così da aumentarne la riusabilità per i più particolari utilizzi. Da qui la presentazione della struttura GiST: Generalized Search Tree. Concluderà una valutazione dei metodi d’accesso esposti nella dissertazione con un riepilogo dei principali dati relativi ai costi computazionali, vantaggi e svantaggi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’oggetto del progetto di restauro è il Castello di Montebello, un’antica fortezza inserita all’interno del circuito di costruzioni militari della Valle del Marecchia, dunque un oggetto della storia e nella storia. Dunque un’attenta fase diagnostica-conoscitiva deve costituire la premessa indispensabile a qualsiasi intervento sulla preesistenza. Così a partire dai dati conoscitivi assunti si sono delineati gli obiettivi del progetto. L’obiettivo conservativo viene, in questo caso specifico, raggiunto non solo attraverso la conservazione vera e propria, ma anche attraverso la demolizione: una quasi paradossale demolizione per la conservazione. Le strutture introdotte con l’intervento di ricostruzione degli anni Sessanta del Novecento effettuato sul manufatto storico infatti, non solo, non introducono valore aggiuntivo all’opera,ma ne compromettono, per soluzioni, materiali ed incertezza costruttiva, la spazialità e la sicurezza, dunque la conservazione. Così, attraverso operazioni ora di conservazione, ora di demolizione e ricostruzione si è cercato di predisporre la fabbrica affinché, in modo sicuro possa accogliere una funzione, necessariamente compatibile e rispettosa del manufatto, che ne consenta il prolungamento della vita e la conservazione nel tempo. La funzione museale, finalizzata alla valorizzazione del complesso difensivo e all’esposizione della collezione epigrafica della famiglia proprietaria sembrano rispondere appieno alle domande del progetto di restauro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chiunque visiti il Castello di Sorrivoli, può percepire lo straordinario valore testimoniale di questo monumento, dall’aspetto “venerando e pittoresco”, che racchiude in sé quasi mille anni di storia. Il continuo utilizzo del castello, le piccole opere di manutenzione e le campagne di restauro hanno garantito la trasmissione al presente di apparati tipici dell’architettura bellica medievale e del palatium residenziale, ma soprattutto hanno reso possibile leggere parte di questi mille anni direttamente sulla fabbrica. Quello che invece colpisce negativamente è come il castello abbia dovuto adattarsi alle nuove funzioni, imposte aprioristicamente negli ultimi decenni e non viceversa. Spazi straordinari sono stati compromessi, gran parte delle sale sono utilizzate come deposito e le ali del castello, che non possono essere ragionevolmente sfruttate dalla comunità religiosa, si trovano in uno stato di conservazione pessimo, mettendo così a repentaglio la possibilità di continuare questa traditio, intesa col significato latino di tradere ai posteri la memoria del castello. L’approccio alla fabbrica richiedeva dunque, oltre agli interventi sui paramenti, una nuova destinazione d’uso che, coinvolgendo tutto il castello, ne valorizzasse le spazialità e soprattutto permettesse la conservazione di tutte le sue parti costitutive. In secondo luogo, la nuova ipotesi aspirava a confrontarsi con una situazione realistica e sostenibile dal punto di vista della gestione del complesso. Dopo aver valutato quelle che erano le opportunità offerte dal territorio e le vocazioni d’uso del castello stesso, è quindi emersa la necessità di avere due livelli di fruizione, uno che permettesse a tutti di conoscere e visitare il castello e le sue parti più significative e il secondo più materiale, legato alla presenza di tutti quei servizi che rendono confortevole la permanenza delle persone. Per queste ragioni il percorso ha inizio nel parco, con una lettura complessiva del monumento; prosegue, attraverso la postierla, nel piano interrato, dove è allestito un museo virtuale che narra, in maniera interattiva, la storia del castello e termina sulla corte, dove il nuovo volume, che ripropone la spazialità dell’ala crollata, permette di comprendere i legami intrinseci col territorio circostante. La torre centrale assume infine il ruolo di punto culminante di questa ascesa verso la conoscenza del castello, diventando un luogo metaforico di meditazione e osservazione del paesaggio. Il piano terra e il piano primo dell’antico palatium ospitano invece una struttura ricettiva, che aspirando ad un’elevata qualità di servizi offerti, è dotata di punto vendita e degustazione di prodotti tipici e sala conferenze. La scelta di ricostruire l’ala crollata invece, non vuol essere un gesto autografo, ma deriva dall’esigenza di far funzionare al meglio il complesso sistema del castello; sono stati destinati al volume di nuova edificazione quei servizi necessari che però non erano compatibili con la fabbrica antica e soprattutto si è cercato di dar conclusione al racconto iniziato nel giardino. In tal senso la valorizzazione del castello si articola come un percorso di conoscenza che si pone come scopo primario la conservazione del monumento, senza però negare l’innovazione legata alla contemporaneità dell’intervento e alla volontà di volerlo includere in una più ampia dinamica territoriale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Con il termine Smart Grid si intende una rete urbana capillare che trasporta energia, informazione e controllo, composta da dispositivi e sistemi altamente distribuiti e cooperanti. Essa deve essere in grado di orchestrare in modo intelligente le azioni di tutti gli utenti e dispositivi connessi al fine di distribuire energia in modo sicuro, efficiente e sostenibile. Questo connubio fra ICT ed Energia viene comunemente identificato anche con il termine Smart Metering, o Internet of Energy. La crescente domanda di energia e l’assoluta necessità di ridurre gli impatti ambientali (pacchetto clima energia 20-20-20 [9]), ha creato una convergenza di interessi scientifici, industriali e politici sul tema di come le tecnologie ICT possano abilitare un processo di trasformazione strutturale di ogni fase del ciclo energetico: dalla generazione fino all’accumulo, al trasporto, alla distribuzione, alla vendita e, non ultimo, il consumo intelligente di energia. Tutti i dispositivi connessi, diventeranno parte attiva di un ciclo di controllo esteso alle grandi centrali di generazione così come ai comportamenti dei singoli utenti, agli elettrodomestici di casa, alle auto elettriche e ai sistemi di micro-generazione diffusa. La Smart Grid dovrà quindi appoggiarsi su una rete capillare di comunicazione che fornisca non solo la connettività fra i dispositivi, ma anche l’abilitazione di nuovi servizi energetici a valore aggiunto. In questo scenario, la strategia di comunicazione sviluppata per lo Smart Metering dell’energia elettrica, può essere estesa anche a tutte le applicazioni di telerilevamento e gestione, come nuovi contatori dell’acqua e del gas intelligenti, gestione dei rifiuti, monitoraggio dell’inquinamento dell’aria, monitoraggio del rumore acustico stradale, controllo continuo del sistema di illuminazione pubblico, sistemi di gestione dei parcheggi cittadini, monitoraggio del servizio di noleggio delle biciclette, ecc. Tutto ciò si prevede possa contribuire alla progettazione di un unico sistema connesso, dove differenti dispositivi eterogenei saranno collegati per mettere a disposizione un’adeguata struttura a basso costo e bassa potenza, chiamata Metropolitan Mesh Machine Network (M3N) o ancora meglio Smart City. Le Smart Cities dovranno a loro volta diventare reti attive, in grado di reagire agli eventi esterni e perseguire obiettivi di efficienza in modo autonomo e in tempo reale. Anche per esse è richiesta l’introduzione di smart meter, connessi ad una rete di comunicazione broadband e in grado di gestire un flusso di monitoraggio e controllo bi-direzionale esteso a tutti gli apparati connessi alla rete elettrica (ma anche del gas, acqua, ecc). La M3N, è un’estensione delle wireless mesh network (WMN). Esse rappresentano una tecnologia fortemente attesa che giocherà un ruolo molto importante nelle futura generazione di reti wireless. Una WMN è una rete di telecomunicazione basata su nodi radio in cui ci sono minimo due percorsi che mettono in comunicazione due nodi. E’ un tipo di rete robusta e che offre ridondanza. Quando un nodo non è più attivo, tutti i rimanenti possono ancora comunicare tra di loro, direttamente o passando da uno o più nodi intermedi. Le WMN rappresentano una tipologia di rete fondamentale nel continuo sviluppo delle reti radio che denota la divergenza dalle tradizionali reti wireless basate su un sistema centralizzato come le reti cellulari e le WLAN (Wireless Local Area Network). Analogamente a quanto successo per le reti di telecomunicazione fisse, in cui si è passati, dalla fine degli anni ’60 ai primi anni ’70, ad introdurre schemi di rete distribuite che si sono evolute e man mano preso campo come Internet, le M3N promettono di essere il futuro delle reti wireless “smart”. Il primo vantaggio che una WMN presenta è inerente alla tolleranza alla caduta di nodi della rete stessa. Diversamente da quanto accade per una rete cellulare, in cui la caduta di una Base Station significa la perdita di servizio per una vasta area geografica, le WMN sono provviste di un’alta tolleranza alle cadute, anche quando i nodi a cadere sono più di uno. L'obbiettivo di questa tesi è quello di valutare le prestazioni, in termini di connettività e throughput, di una M3N al variare di alcuni parametri, quali l’architettura di rete, le tecnologie utilizzabili (quindi al variare della potenza, frequenza, Building Penetration Loss…ecc) e per diverse condizioni di connettività (cioè per diversi casi di propagazione e densità abitativa). Attraverso l’uso di Matlab, è stato quindi progettato e sviluppato un simulatore, che riproduce le caratteristiche di una generica M3N e funge da strumento di valutazione delle performance della stessa. Il lavoro è stato svolto presso i laboratori del DEIS di Villa Grifone in collaborazione con la FUB (Fondazione Ugo Bordoni).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I RAEE (Rifiuti da Apparecchiature Elettriche ed Elettroniche) costituiscono un problema prioritario a livello europeo per quanto riguarda la loro raccolta, stoccaggio, trattamento, recupero e smaltimento, essenzialmente per i seguenti tre motivi: Il primo riguarda le sostanze pericolose contenute nei RAEE. Tali sostanze, nel caso non siano trattate in modo opportuno, possono provocare danni alla salute dell’uomo e all’ambiente. Il secondo è relativo alla vertiginosa crescita relativa al volume di RAEE prodotti annualmente. La crescita è dovuta alla continua e inesorabile commercializzazione di prodotti elettronici nuovi (è sufficiente pensare alle televisioni, ai cellulari, ai computer, …) e con caratteristiche performanti sempre migliori oltre all’accorciamento del ciclo di vita di queste apparecchiature elettriche ed elettroniche (che sempre più spesso vengono sostituiti non a causa del loro malfunzionamento, ma per il limitato livello di performance garantito). Il terzo (ed ultimo) motivo è legato all’ambito economico in quanto, un corretto trattamento dei RAEE, può portare al recupero di materie prime secondarie (alluminio, ferro, acciaio, plastiche, …) da utilizzare per la realizzazione di nuove apparecchiature. Queste materie prime secondarie possono anche essere vendute generando profitti considerevoli in ragione del valore di mercato di esse che risulta essere in costante crescita. Questo meccanismo ha portato a sviluppare un vasto quadro normativo che regolamenta tutto l’ambito dei RAEE dalla raccolta fino al recupero di materiali o al loro smaltimento in discarica. È importante inoltre sottolineare come lo smaltimento in discarica sia da considerarsi come una sorta di ‘ultima spiaggia’, in quanto è una pratica piuttosto inquinante. Per soddisfare le richieste della direttiva l’obiettivo dev’essere quello di commercializzare prodotti che garantiscano un minor impatto ambientale concentrandosi sul processo produttivo, sull’utilizzo di materiali ‘environmentally friendly’ e sulla gestione consona del fine vita. La Direttiva a livello europeo (emanata nel 2002) ha imposto ai Paesi la raccolta differenziata dei RAEE e ha definito anche un obiettivo di raccolta per tutti i suoi Stati Membri, ovvero 4 kg di RAEE raccolti annualmente da ogni abitante. Come riportato di seguito diversi paesi hanno raggiunto l’obiettivo sopra menzionato (l’Italia vi è riuscita nel 2010), ma esistono anche casi di paesi che devono necessariamente migliorare il proprio sistema di raccolta e gestione dei RAEE. Più precisamente in Italia la gestione dei RAEE è regolamentata dal Decreto Legislativo 151/2005 discusso approfonditamente in seguito ed entrato in funzione a partire dal 1° Gennaio 2008. Il sistema italiano è basato sulla ‘multi consortilità’, ovvero esistono diversi Sistemi Collettivi che sono responsabili della gestione dei RAEE per conto dei produttori che aderiscono ad essi. Un altro punto chiave è la responsabilità dei produttori, che si devono impegnare a realizzare prodotti durevoli e che possano essere recuperati o riciclati facilmente. I produttori sono coordinati dal Centro di Coordinamento RAEE (CDC RAEE) che applica e fa rispettare le regole in modo da rendere uniforme la gestione dei RAEE su tutto il territorio italiano. Il documento che segue sarà strutturato in quattro parti. La prima parte è relativa all’inquadramento normativo della tematica dei RAEE sia a livello europeo (con l’analisi della direttiva ROHS 2 sulle sostanze pericolose contenute nei RAEE e la Direttiva RAEE), sia a livello italiano (con un’ampia discussione sul Decreto Legislativo 151/2005 e Accordi di Programma realizzati fra i soggetti coinvolti). La seconda parte tratta invece il sistema di gestione dei RAEE descrivendo tutte le fasi principali come la raccolta, il trasporto e raggruppamento, il trattamento preliminare, lo smontaggio, il riciclaggio e il recupero, il ricondizionamento, il reimpiego e la riparazione. La terza definisce una panoramica delle principali metodologie di smaltimento dei 5 raggruppamenti di RAEE (R1, R2, R3, R4, R5). La quarta ed ultima parte riporta i risultati a livello italiano, europeo ed extra-europeo nella raccolta dei RAEE, avvalendosi dei report annuali redatti dai principali sistemi di gestione dei vari paesi considerati.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perché L’Aquila? A seguito del sisma del 2009, L’Aquila offre un’occasione per riflessioni su temi urbanistici e di composizione urbana, oltre che un reale campo di sperimentazione architettonica. Perché il centro storico? Come cuore culturale ed economico dell’intera vallata dell’Aterno, il centro storico rappresenta una priorità per la Ricostruzione; il suo valore storico è la sintesi consolidata nel tempo del rapporto di una società con i luoghi della propria residenza. Una memoria da difendere attraverso l’elaborazione di strategie di intervento e idee di progetto. Qual è l’obiettivo? Il lavoro di ricerca e di progettazione mira ad individuare degli scenari e proporre delle idee di ricostruzione per tornare ad abitare il centro storico. Qual è il metodo? Per affrontare una situazione così complessa è indispensabile una conoscenza storica della struttura urbana della città prima del sisma. Inoltre è necessario comprendere l’evoluzione degli eventi (da aprile del 2009 al luglio 2011) al fine di riconoscere quali direzioni possibili può prendere un progetto che si inserisce, oggi, in un sistema ancora in cerca di un equilibrio. La Ricostruzione, intesa come processo strategico e progettuale di ridefinizione degli equilibri e delle prospettive, consente, ma forse ancor meglio esige, un ripensamento complessivo ed organico dell’intera struttura urbana. Si tratta quindi di ridefinire le relazioni tra la città storica e la sua periferia comprendendo il rapporto che un progetto di Ricostruzione può avere nel medio e lungo termine, il tutto in un contesto economico e soprattutto sociale in forte trasformazione. Il progetto propone così un nuovo complesso di residenze universitarie che potrà accogliere settantadue studenti insieme a diversi servizi quali sale lettura, sale polivalenti e una mensa. Si prevede inoltre il potenziamento della struttura di accoglienza dei salesiani con 8 nuovi alloggi per professori e una nuova Biblioteca. Il progetto vuole ricreare una continuità nel sistema del verde urbano come mezzo più appropriato e idoneo per relazionare la prima periferia alla città murata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il percorso parte dall'analisi delle strategie della Teoria dei giochi, si sofferma sul concetto di razionalità nelle decisioni(economiche); continua con la descrizione del funzionamento del baratto in tempi antichi e le declinazioni che ha avuto(economie del dono, baratto muto); esamina la teoria del valore di Carl Menger, per poi allargare la visione alle teorie del valore enunciate dagli economisti dal XVIII secolo, anni in cui si iniziavano ad esaminare i meccanismi alla base degli scambi di mercato; si precisa il funzionamento del ciclo economico(non è eterno), la possibilità di crollo del sistema economico, le ripercussioni di questo sulla moneta(ricerca di sistemi economici alternativi). Nella seconda parte si analizzano i risultati delle più recenti simulazioni relative alla nascita della moneta e, non meno importante, al suo collasso.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INDICE INTRODUZIONE 1 1. DESCRIZIONE DEL SISTEMA COSTRUTTIVO 5 1.1 I pannelli modulari 5 1.2 Le pareti tozze in cemento armato gettate in opera realizzate con la tecnologia del pannello di supporto in polistirene 5 1.3 La connessione tra le pareti e la fondazione 6 1.4 Le connessioni tra pareti ortogonali 7 1.5 Le connessioni tra pareti e solai 7 1.6 Il sistema strutturale così ottenuto e le sue caratteristiche salienti 8 2. RICERCA BIBLIOGRAFICA 11 2.1 Pareti tozze e pareti snelle 11 2.2 Il comportamento scatolare 13 2.3 I muri sandwich 14 2.4 Il “ferro-cemento” 15 3. DATI DI PARTENZA 19 3.1 Schema geometrico - architettonico definitivo 19 3.2 Abaco delle sezioni e delle armature 21 3.3 Materiali e resistenze 22 3.4 Valutazione del momento di inerzia delle pareti estese debolmente armate 23 3.4.1 Generalità 23 3.4.2 Caratteristiche degli elementi provati 23 3.4.3 Formulazioni analitiche 23 3.4.4 Considerazioni sulla deformabilità dei pannelli debolmente armati 24 3.4.5 Confronto tra rigidezze sperimentali e rigidezze valutate analiticamente 26 3.4.6 Stima di un modulo elastico equivalente 26 4. ANALISI DEI CARICHI 29 4.1 Stima dei carichi di progetto della struttura 29 4.1.1 Stima dei pesi di piano 30 4.1.2 Tabella riassuntiva dei pesi di piano 31 4.2 Analisi dei carichi da applicare in fase di prova 32 4.2.1 Pesi di piano 34 4.2.2 Tabella riassuntiva dei pesi di piano 35 4.3 Pesi della struttura 36 4.3.1 Ripartizione del carico sulle pareti parallele e ortogonali 36 5. DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI 37 5.1 Caratteristiche di modellazione 37 5.2 Caratteristiche geometriche del modello 38 5.3 Analisi dei carichi 41 5.4 Modello con shell costituite da un solo layer 43 5.4.1 Modellazione dei solai 43 5.4.2 Modellazione delle pareti 44 5.4.3 Descrizione delle caratteristiche dei materiali 46 5.4.3.1 Comportamento lineare dei materiali 46 6. ANALISI DEL COMPORTAMENTO STATICO DELLA STRUTTURA 49 6.1 Azioni statiche 49 6.2 Analisi statica 49 7. ANALISI DEL COMPORTAMENTO DINAMICO DELLA STRUTTURA 51 7.1 Determinazione del periodo proprio della struttura con il modello FEM 51 7.1.1 Modi di vibrare corrispondenti al modello con solai e pareti costituiti da elementi shell 51 7.1.1.1 Modi di vibrare con modulo pari a E 51 7.1.1.2 Modi di vibrare con modulo pari a 0,5E 51 7.1.1.3 Modi di vibrare con modulo pari a 0,1E 51 7.1.2 Modi di vibrare corrispondenti al modello con solai infinitamente rigidi e pareti costituite da elementi shell 52 7.1.2.1 Modi di vibrare con modulo pari a E 52 7.1.2.2 Modi di vibrare con modulo pari a 0,5E 52 7.1.2.3 Modi di vibrare con modulo pari a 0,1E: 52 7.1.3 Modi di vibrare corrispondenti al modello con solai irrigiditi con bielle e pareti costituite da elementi shell 53 7.1.3.1 Modi di vibrare con modulo pari a E 53 7.1.3.2 Modi di vibrare con modulo pari a 0,5E 53 7.1.3.3 Modi di vibrare con modulo pari a 0,1E 53 7.2 Calcolo del periodo proprio della struttura assimilandola ad un oscillatore semplice 59 7.2.1 Analisi svolta assumendo l’azione del sisma in ingresso in direzione X-X 59 7.2.1.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 59 7.2.1.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 59 7.2.1.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 61 7.2.1.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 63 7.2.1.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 66 7.2.1.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 69 7.2.1.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 69 7.2.1.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 71 7.2.1.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 73 7.2.1.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 76 7.2.1.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 79 7.2.1.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 79 7.2.1.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 81 7.2.1.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 83 7.2.1.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 86 7.2.2 Analisi svolta assumendo l’azione del sisma in ingresso in direzione Y-Y 89 7.2.2.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 89 7.2.2.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 89 7.2.2.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 91 7.2.2.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 93 7.2.2.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 98 7.2.2.1.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 103 7.2.2.1.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 105 7.2.2.1.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 107 7.2.2.1.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 112 7.2.2.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 117 7.2.2.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 117 7.2.2.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 119 7.2.2.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 121 7.2.2.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 126 7.2.2.2.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5 E 131 7.2.2.2.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 133 7.2.2.2.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 135 7.2.2.2.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 140 7.2.2.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 145 7.2.2.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 145 7.2.2.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 147 7.2.2.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 149 7.2.2.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 154 7.2.2.3.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1 E 159 7.2.2.3.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 161 7.2.2.3.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 163 7.2.2.3.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 168 7.3 Calcolo del periodo proprio della struttura approssimato utilizzando espressioni analitiche 174 7.3.1 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente un peso P gravante all’estremo libero 174 7.3.1.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 174 7.3.1.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 177 7.3.1.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 179 7.3.2 Approssimazione della struttura ad una mensola incastrata alla base, di peso Q=ql, avente un peso P gravante all’estremo libero e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 181 7.3.2.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 181 7.3.2.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 186 7.3.3 Approssimazione della struttura ad un portale avente peso Qp = peso di un piedritto, Qt=peso del traverso e un peso P gravante sul traverso medesimo 191 7.3.3.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 191 7.3.3.2 Applicazione allo specifico caso di studio in esame con modulo ellastico E=300000 kg/cm2 192 7.3.3.3 Applicazione allo specifico caso di studio in esame con modulo ellastico E=30000 kg/cm2 194 7.3.4 Approssimazione della struttura ad un portale di peso Qp = peso di un piedritto, Qt=peso del traverso e avente un peso P gravante sul traverso medesimo e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 196 7.3.4.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 196 7.3.4.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 201 7.3.5 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente le masse m1,m2....mn concentrate nei punti 1,2….n 206 7.3.5.1 Riferimenti teorici: metodo approssimato 206 7.3.5.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 207 7.3.5.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 209 7.3.6 Approssimazione della struttura ad un telaio deformabile con tavi infinitamente rigide 211 7.3.6.1 Riferimenti teorici: vibrazioni dei telai 211 7.3.6.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 212 7.3.6.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 215 7.3.7 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente masse m1,m2....mn concentrate nei punti 1,2….n e studiata come un sistema continuo 218 7.3.7.1 Riferimenti teorici: metodo energetico; Masse ripartite e concentrate; Formula di Dunkerley 218 7.3.7.1.1 Il metodo energetico 218 7.3.7.1.2 Masse ripartite e concentrate. Formula di Dunkerley 219 7.3.7.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 221 7.3.7.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 226 7.4 Calcolo del periodo della struttura approssimato mediante telaio equivalente 232 7.4.1 Dati geometrici relativi al telaio equivalente e determinazione dei carichi agenti su di esso 232 7.4.1.1 Determinazione del periodo proprio della struttura assumendo diversi valori del modulo elastico E 233 7.5 Conclusioni 234 7.5.1 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura ad un grado di libertà 234 7.5.2 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura a più gradi di libertà e a sistema continuo 236 8. ANALISI DEL COMPORTAMENTO SISMICO DELLA STRUTTURA 239 8.1 Modello con shell costituite da un solo layer 239 8.1.1 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,1g 239 8.1.1.1 Generalità 239 8.1.1.2 Sollecitazioni e tensioni sulla sezione di base 242 8.1.1.2.1 Combinazione di carico ”Carichi verticali più Spettro di Risposta scalato ad un valore di PGA pari a 0,1g” 242 8.1.1.2.2 Combinazione di carico ”Spettro di Risposta scalato ad un valore di 0,1g di PGA” 245 8.1.1.3 Spostamenti di piano 248 8.1.1.4 Accelerazioni di piano 248 8.1.2 Analisi Time-History lineare con accelerogramma caratterizzato da un valore di PGA pari a 0,1g 249 8.1.2.1 Generalità 249 8.1.2.2 Sollecitazioni e tensioni sulla sezione di base 251 8.1.2.2.1 Combinazione di carico ” Carichi verticali più Accelerogramma agente in direzione Ye avente una PGA pari a 0,1g” 251 8.1.2.2.2 Combinazione di carico ” Accelerogramma agente in direzione Y avente un valore di PGA pari a 0,1g ” 254 8.1.2.3 Spostamenti di piano assoluti 257 8.1.2.4 Spostamenti di piano relativi 260 8.1.2.5 Accelerazioni di piano assolute 262 8.1.3 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,3g 264 8.1.3.1 Generalità 264 8.1.3.2 Sollecitazioni e tensioni sulla sezione di base 265 8.1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All'interno della tesi si è sviluppata una metodologia di supporto alle decisioni utile all'individuazione di determinate zone distribuite all'interno dell'area del delta del fiume Ural (Kazakistan), da considerare prioritarie ai fini della tutela della biodiversità. Il livello di priorità di queste aree è stato ricavato mediante l'aggregazione delle informazioni relative alle categorie di conservazione delle specie minacciate che popolano i diversi ecosistemi che caratterizzano l'area studio. Le categorie sono state confrontate fra loro mediante l'AHP che ha permesso di ottenere un set di pesi. L'utilizzo di tre differenti metodi di aggregazione (SAW, OWA, TOPSIS), ha permesso di ricavare un valore di conservazione che raggruppa le informazioni dei pesi attribuiti alle specie in un unico valore (CV) diverso per ogni metodo. Distribuiti i CV, sulla base della presenza delle relative specie, viene sviluppata una mappa di distribuzione dei valori di conservazione sintetici (CVS) ricavati mediante l'aggregazione dei CV in ogni punto dell'area studio. L'utilizzo di questa metodologia ha permesso di individuare, come previsto dagli obiettivi dell'elaborato, le aree a maggior valore per la conservazione degli habitat e delle specie, sulle quali focalizzare le future azioni di tutela e monitoraggio ambientale, dall'altro l'applicazione di una metodologia di supporto alle decisioni in grado di far fronte ai problemi di scarsa disponibilità e reperibilità di dati utili alla caratterizzazione dell’area di studio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’obiettivo di questo lavoro è il calcolo del fattore di struttura R che può essere adottato in funzione delle caratteristiche della struttura: periodo naturale T, duttilità richiesta mu_r ed indice di smorzamento csi. Il modello adottato per rappresentare la struttura è l’oscillatore semplice elastico - perfettamente plastico. Operativamente, scelto un sisma registrato, si considera una struttura caratterizzata da un determinato periodo T e, a parità di livello di sicurezza (cioè a parità di duttilità richiesta), tramite un procedimento iterativo si procede al calcolo di R_5 relativo ad uno smorzamento pari al 5% e di R_csi relativo ad un generico smorzamento csi>5%; il confronto fra questi due valori è espresso dal parametro alpha_csi=R_csi/R_5. I risultati ottenuti dal calcolo vengono inseriti in un database. A seguire vengono implementate una serie di analisi (anche di tipo statistico) sui dati raccolti nel database per comprendere l’influenza delle varie caratteristiche della struttura sul valore del fattore di riduzione delle forze sismiche.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fra le varie ragioni della crescente pervasività di Internet in molteplici settori di mercato del tutto estranei all’ICT, va senza dubbio evidenziata la possibilità di creare canali di comunicazione attraverso i quali poter comandare un sistema e ricevere da esso informazioni di qualsiasi genere, qualunque distanza separi controllato e controllore. Nel caso specifico, il contesto applicativo è l’automotive: in collaborazione col Dipartimento di Ingegneria Elettrica dell’Università di Bologna, ci si è occupati del problema di rendere disponibile a distanza la grande quantità di dati che i vari sotto-sistemi componenti una automobile elettrica si scambiano fra loro, sia legati al tipo di propulsione, elettrico appunto, come i livelli di carica delle batterie o la temperatura dell’inverter, sia di natura meccanica, come i giri motore. L’obiettivo è quello di permettere all’utente (sia esso il progettista, il tecnico riparatore o semplicemente il proprietario) il monitoraggio e la supervisione dello stato del mezzo da remoto nelle sue varie fasi di vita: dai test eseguiti su prototipo in laboratorio, alla messa in strada, alla manutenzione ordinaria e straordinaria. L’approccio individuato è stato quello di collezionare e memorizzare in un archivio centralizzato, raggiungibile via Internet, tutti i dati necessari. Il sistema di elaborazione a bordo richiede di essere facilmente integrabile, quindi di piccole dimensioni, e a basso costo, dovendo prevedere la produzione di molti veicoli; ha inoltre compiti ben definiti e noti a priori. Data la situazione, si è quindi scelto di usare un sistema embedded, cioè un sistema elettronico di elaborazione progettato per svolgere un limitato numero di funzionalità specifiche sottoposte a vincoli temporali e/o economici. Apparati di questo tipo sono denominati “special purpose”, in opposizione ai sistemi di utilità generica detti “general purpose” quali, ad esempio, i personal computer, proprio per la loro capacità di eseguire ripetutamente un’azione a costo contenuto, tramite un giusto compromesso fra hardware dedicato e software, chiamato in questo caso “firmware”. I sistemi embedded hanno subito nel corso del tempo una profonda evoluzione tecnologica, che li ha portati da semplici microcontrollori in grado di svolgere limitate operazioni di calcolo a strutture complesse in grado di interfacciarsi a un gran numero di sensori e attuatori esterni oltre che a molte tecnologie di comunicazione. Nel caso in esame, si è scelto di affidarsi alla piattaforma open-source Arduino; essa è composta da un circuito stampato che integra un microcontrollore Atmel da programmare attraverso interfaccia seriale, chiamata Arduino board, ed offre nativamente numerose funzionalità, quali ingressi e uscite digitali e analogici, supporto per SPI, I2C ed altro; inoltre, per aumentare le possibilità d’utilizzo, può essere posta in comunicazione con schede elettroniche esterne, dette shield, progettate per le più disparate applicazioni, quali controllo di motori elettrici, gps, interfacciamento con bus di campo quale ad esempio CAN, tecnologie di rete come Ethernet, Bluetooth, ZigBee, etc. L’hardware è open-source, ovvero gli schemi elettrici sono liberamente disponibili e utilizzabili così come gran parte del software e della documentazione; questo ha permesso una grande diffusione di questo frame work, portando a numerosi vantaggi: abbassamento del costo, ambienti di sviluppo multi-piattaforma, notevole quantità di documentazione e, soprattutto, continua evoluzione ed aggiornamento hardware e software. È stato quindi possibile interfacciarsi alla centralina del veicolo prelevando i messaggi necessari dal bus CAN e collezionare tutti i valori che dovevano essere archiviati. Data la notevole mole di dati da elaborare, si è scelto di dividere il sistema in due parti separate: un primo nodo, denominato Master, è incaricato di prelevare dall’autovettura i parametri, di associarvi i dati GPS (velocità, tempo e posizione) prelevati al momento della lettura e di inviare il tutto a un secondo nodo, denominato Slave, che si occupa di creare un canale di comunicazione attraverso la rete Internet per raggiungere il database. La denominazione scelta di Master e Slave riflette la scelta fatta per il protocollo di comunicazione fra i due nodi Arduino, ovvero l’I2C, che consente la comunicazione seriale fra dispositivi attraverso la designazione di un “master” e di un arbitrario numero di “slave”. La suddivisione dei compiti fra due nodi permette di distribuire il carico di lavoro con evidenti vantaggi in termini di affidabilità e prestazioni. Del progetto si sono occupate due Tesi di Laurea Magistrale; la presente si occupa del dispositivo Slave e del database. Avendo l’obiettivo di accedere al database da ovunque, si è scelto di appoggiarsi alla rete Internet, alla quale si ha oggi facile accesso da gran parte del mondo. Questo ha fatto sì che la scelta della tecnologia da usare per il database ricadesse su un web server che da un lato raccoglie i dati provenienti dall’autovettura e dall’altro ne permette un’agevole consultazione. Anch’esso è stato implementato con software open-source: si tratta, infatti, di una web application in linguaggio php che riceve, sotto forma di richieste HTTP di tipo GET oppure POST, i dati dal dispositivo Slave e provvede a salvarli, opportunamente formattati, in un database MySQL. Questo impone però che, per dialogare con il web server, il nodo Slave debba implementare tutti i livelli dello stack protocollare di Internet. Due differenti shield realizzano quindi il livello di collegamento, disponibile sia via cavo sia wireless, rispettivamente attraverso l’implementazione in un caso del protocollo Ethernet, nell’altro della connessione GPRS. A questo si appoggiano i protocolli TCP/IP che provvedono a trasportare al database i dati ricevuti dal dispositivo Master sotto forma di messaggi HTTP. Sono descritti approfonditamente il sistema veicolare da controllare e il sistema controllore; i firmware utilizzati per realizzare le funzioni dello Slave con tecnologia Ethernet e con tecnologia GPRS; la web application e il database; infine, sono presentati i risultati delle simulazioni e dei test svolti sul campo nel laboratorio DIE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Città natale del famoso compositore Gioacchino Rossini, Pesaro ospita e celebra le tracce della sua vita e della sua opera. L’appellativo di Pesaro “Città rossiniana”richiede alla città stessa la presenza di molte sedi tecniche e amministrative per tutti gli enti che si occupano della celebrazione e del mantenimento in vita della tradizione rossiniana. Questo è il motivo per cui si propone l’idea di un Centro Rossiniano che possa racchiudere in sé tutte le funzioni che stanno “dietro le quinte” delle manifestazioni, delle rappresentazioni, dello studio, della conservazione del materiale e della didattica riguardanti Gioacchino Rossini. Attualmente le consistenze storiche e artistiche che lo riguardano hanno diversi proprietari e altrettante numerose sedi, senza appartenere ad una collezione unica con univoca ed ordinata collocazione. Alla funzione museale si propone di affiancare quella di studio e approfondimento sulla vita del compositore e sul materiale conservato, prevedendo un Centro Studi con laboratori, aule studio e per la didattica. Ulteriormente, si propone di dare sede amministrativa al Rossini Opera Festival e alla Fondazione Rossini, liberando così il Teatro ed il Conservatorio dalle funzioni che non sono loro prettamente coerenti. Il progetto prevede inoltre di dotare il Centro Rossiniano di un auditorium-sala conferenze, che possa alleggerire il carico di attività del Teatro Rossini e della Sala Pedrotti. L’area di cui il progetto si interessa è racchiusa all’interno di un bastione che apparteneva alla cinta muraria cinquecentesca e che attualmente ospita l’Istituto Ospedaliero San Salvatore. In accordo con gli uffici competenti dell’amministrazione comunale, si prevede il decentramento della sede dell’Ospedale e la liberazione dell’area del bastione dalle preesistenze che oggi ne opprimono il valore storico ed il carattere esclusivo. Lo scopo di tale disimpegno dell’area è inoltre quello di destinarla a verde pubblico, nel rispetto della preesistenza storica e di collegare la zona di interesse al sistema dei percorsi ciclopedonali che si diramano in tutta la città di Pesaro. Il progetto propone ancora, l’inserimento nell’area di una quota di residenze e prevede l’alleggerimento del carico di traffico all’interno del centro storico, dirottandone gran parte lungo i viali alberati che ne percorrono il perimetro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Attraverso l’analisi di tre progetti elaborati durante il percorso di studi, la presente tesi curriculare pone l’attenzione sul tema dello spazio pubblico, in particolare della piazza. Elemento urbano di fondamentale carattere e valore sociale, la piazza riveste da sempre specifico interesse urbanistico ed architettonico, quale nodo della rete urbana e del tessuto viario. Determinante per lo sviluppo in termini di qualità e quantità, rappresenta lo spazio pubblico per eccellenza, nel quale si concentrano, sovrapponendosi nel tempo, le esperienze di vita comune. Punto di convergenza di percorsi, luogo dell’incontro, della sosta e del passeggio, sede di funzioni pubbliche, identifica la simbolica centralità della comunità rispetto all’indistinto mondo esterno.