79 resultados para Sensibilité maternellle
Resumo:
Il Disturbo Evitante/Restrittivo dell’Assunzione di Cibo (ARFID) è un Disturbo della Nutrizione e dell’Alimentazione con tre possibili sottotipi, accomunati dalla persistente insoddisfazione di fabbisogni nutrizionali e/o energetici. Crescenti sono le prove di sovrapposizione con il Disturbo dello Spettro Autistico (ASD), per comuni difficoltà alimentari e sottostanti fattori di sensorialità e rigidità. Lo studio ha caratterizzato un campione di affetti da ARFID e da ASD in età evolutiva; i due gruppi sono stati confrontati per storia clinico-terapeutica e profili indagati ai test: BAMBI-R (Brief Autism Mealtime Behavior Inventory-Revised) per i comportamenti disfunzionali al pasto, SSP-2 (Short Sensory Profile-2) per le alterazioni della sensorialità e RBS-R (Repetitive Behavior Scale-Revised) per i comportamenti stereotipati e ristretti. Il gruppo con ARFID è stato inoltre analizzato per variabili antropometrico-nutrizionali e sottotipi clinici. I soggetti con ARFID presentavano età superiore e più frequenti tratti ansioso-fobici in comorbilità. Ai test sopracitati, gli affetti da ARFID e da ASD convergevano per numerosi aspetti; tuttavia, le difficoltà alimentari (in particolare, la selettività) prevalevano tra i primi, mentre maggiori livelli di sensibilità sensoriale e di comportamenti ristretti, stereotipati e compulsivi caratterizzavano i secondi. Tra i sottotipi clinici di ARFID, spesso co-occorrenti, prevaleva quello selettivo; i tre quadri erano perlopiù comparabili per le variabili indagate e non differivano per aspetti alimentari, comportamentali o sensoriali. In conclusione, gli affetti da ARFID e da ASD si distinguono per alcune peculiari caratteristiche ma collidono per numerose altre. Approfondire lo studio dei fattori implicati nelle difficoltà alimentari condivise, oltre che caratterizzare i fenotipi del DNA in campioni più numerosi, saranno obiettivi da perseguire per un’implementazione di interventi medico-nutrizionali sempre più specifici.
Resumo:
Associare nomi propri a volti di persona è un compito importante, fondamentale nella quotidianità di tutti i giorni. Nonostante questa operazione avvenga quasi sempre in maniera automatica, essa coinvolge una rete neurale complessa ed articolata. Diversi studi offrono strategie che possono aiutare in questo compito; in particolare, è stato riportato che rafforzare i nomi con stimoli cross-modali, ossia presentando più input sensoriali esterni contemporaneamente, può costituire un vantaggio per il recupero in memoria dei nomi stessi. Lo scopo di questa tesi è stato quello di svolgere un’analisi di sensibilità tramite un modello neuro-computazionale su MatLab di ispirazione biologica. Nello specifico sono stati considerati due macro-network: uno per i volti, l’altro per i nomi propri; quest’ultimo in particolare a sua volta si compone di tre aree uni-sensoriali, ciascuna delle quali corrisponde ad un modo specifico con cui codificare un nome (traccia audio, lip reading, name tag). Questi network sono stati dunque implementati attraverso una configurazione articolata su due strati: si potrebbe infatti pensare alla fase di addestramento, basata su un algoritmo hebbiano, come un primo layer del processo, seguito così da un secondo layer, dato invece dalla fase di utilizzo. Dalle simulazioni svolte sembra emergere che addestrare in maniera efficiente le connessioni fra le aree uni-sensoriali dei nomi, ricreando così un'integrazione multi-sensoriale, sia un fattore fondamentale per favorire non solo il ricordo di un nome in sé, ma anche processi mnemonici-associativi che coinvolgono anche lo stimolo visivo di un volto. Le evidenze prodotte risultano inoltre qualitativamente coerenti con analoghi esperimenti in vivo.
Resumo:
La segmentazione prevede la partizione di un'immagine in aree strutturalmente o semanticamente coerenti. Nell'imaging medico, è utilizzata per identificare, contornandole, Regioni di Interesse (ROI) clinico, quali lesioni tumorali, oggetto di approfondimento tramite analisi semiautomatiche e automatiche, o bersaglio di trattamenti localizzati. La segmentazione di lesioni tumorali, assistita o automatica, consiste nell’individuazione di pixel o voxel, in immagini o volumi, appartenenti al tumore. La tecnica assistita prevede che il medico disegni la ROI, mentre quella automatica è svolta da software addestrati, tra cui i sistemi Computer Aided Detection (CAD). Mediante tecniche di visione artificiale, dalle ROI si estraggono caratteristiche numeriche, feature, con valore diagnostico, predittivo, o prognostico. L’obiettivo di questa Tesi è progettare e sviluppare un software di segmentazione assistita che permetta al medico di disegnare in modo semplice ed efficace una o più ROI in maniera organizzata e strutturata per futura elaborazione ed analisi, nonché visualizzazione. Partendo da Aliza, applicativo open-source, visualizzatore di esami radiologici in formato DICOM, è stata estesa l’interfaccia grafica per gestire disegno, organizzazione e memorizzazione automatica delle ROI. Inoltre, è stata implementata una procedura automatica di elaborazione ed analisi di ROI disegnate su lesioni tumorali prostatiche, per predire, di ognuna, la probabilità di cancro clinicamente non-significativo e significativo (con prognosi peggiore). Per tale scopo, è stato addestrato un classificatore lineare basato su Support Vector Machine, su una popolazione di 89 pazienti con 117 lesioni (56 clinicamente significative), ottenendo, in test, accuratezza = 77%, sensibilità = 86% e specificità = 69%. Il sistema sviluppato assiste il radiologo, fornendo una seconda opinione, non vincolante, adiuvante nella definizione del quadro clinico e della prognosi, nonché delle scelte terapeutiche.
Resumo:
In questo lavoro di tesi viene presentato e validato un modello di rischio di alluvione a complessità intermedia per scenari climatici futuri. Questo modello appartiene a quella categoria di strumenti che mirano a soddisfare le esigenze identificate dal World Climate Research Program (WRCP) per affrontare gli effetti del cambiamento climatico. L'obiettivo perseguito è quello di sviluppare, seguendo un approccio ``bottom-up" al rischio climatico regionale, strumenti che possano aiutare i decisori a realizzare l'adattamento ai cambiamenti climatici. Il modello qui presentato è interamente basato su dati open-source forniti dai servizi Copernicus. Il contributo di questo lavoro di tesi riguarda lo sviluppo di un modello, formulato da (Ruggieri et al.), per stimare i danni di eventi alluvionali fluviali per specifici i livelli di riscaldamento globale (GWL). Il modello è stato testato su tre bacini idrografici di medie dimensioni in Emilia-Romagna, Panaro, Reno e Secchia. In questo lavoro, il modello viene sottoposto a test di sensibilità rispetto a un'ipotesi enunciata nella formulazione del modello, poi vengono effettuate analisi relative all'ensemble multi-modello utilizzato per le proiezioni. Il modello viene quindi validato, confrontando i danni stimati nel clima attuale per i tre fiumi con i danni osservati e confrontando le portate simulate con quelle osservate. Infine, vengono stimati i danni associati agli eventi alluvionali in tre scenari climatici futuri caratterizzati da GWL di 1.5° C, 2.0° C e 3.0°C.