106 resultados para aritmetica di Peano teorema di Goodstein
Resumo:
Presentazione dei risultati più importanti e famosi che riguardano la congettura di Collatz. Analisi empiriche e nuovi risultati riguardanti la congettura e le sue generalizzazioni.
Resumo:
La tesi è finalizzata ad una preliminare fase di sperimentazione di un algoritmo che, a partire da dati di acustica, sia in grado di classificare le specie di pesce presenti in cale mono e plurispecifiche. I dati sono stati acquisiti nella fascia costiera della Sicilia meridionale, durante alcune campagne di ricerca effettuate tra il 2002 e il 2011, dall’IAMC – CNR di Capo Granitola. Sono stati registrati i valori delle variabili ambientali e biotiche tramite metodologia acustica e della composizione dei banchi di pesci catturati tramite cale sperimentali: acciughe, sardine, suri, altre specie pelagiche e pesci demersali. La metodologia proposta per la classificazione dei segnali acustici nasce dalla fusione di logica fuzzy e teorema di Bayes, per dar luogo ad un approccio modellistico consistente in un compilatore naïve Bayes operante in ambiente fuzzy. Nella fattispecie si è proceduto alla fase di training del classificatore, mediante un learning sample di percentuali delle categorie ittiche sopra menzionate, e ai dati di alcune delle osservazioni acustiche, biotiche e abiotiche, rilevate dall’echosurvey sugli stessi banchi. La validazione del classificatore è stata effettuata sul test set, ossia sui dati che non erano stati scelti per la fase di training. Per ciascuna cala, sono stati infine tracciati dei grafici di dispersione/correlazione dei gruppi ittici e le percentuali simulate. Come misura di corrispondenza dei dati sono stati considerati i valori di regressione R2 tra le percentuali reali e quelle calcolate dal classificatore fuzzy naïve Bayes. Questi, risultando molto alti (0,9134-0,99667), validavano il risultato del classificatore che discriminava con accuratezza le ecotracce provenienti dai banchi. L’applicabilità del classificatore va comunque testata e verificata oltre i limiti imposti da un lavoro di tesi; in particolare la fase di test va riferita a specie diverse, a condizioni ambientali al contorno differenti da quelle riscontrate e all’utilizzo di learning sample meno estesi.
Resumo:
Nuova frontiera per la procedura di test tailoring è la sintesi di profili vibratori il più reali possibili, nei quali venga tenuto conto della possibile presenza di eventi transitori e della non scontata ripetibilità delle vibrazioni nel tempo. Negli ultimi anni si è rivolto un crescente interesse nel "controllo del Kurtosis", finalizzato alla realizzazione di profili vibratori aventi distribuzione di probabilità non-Gaussiana. Durante l’indagine sperimentale oggetto di questa trattazione si sono portati a rottura per fatica alcuni componenti sottoposti, in generale, a tre differenti tipi di sollecitazione: stazionaria Gaussiana, stazionaria non-Gaussiana e non stazionaria non-Gaussiana. Il componente testato è costituito da un provino cilindrico montato a sbalzo e dotato di una massa concentrata all’estremità libera e di una gola vicina all’incastro, nella quale avviene la rottura per fatica. Durante l’indagine sperimentale si è monitorata la risposta in termini di accelerazione all’estremità libera del provino e di spostamento relativo a monte e a valle della gola, essendo quest’ultimo ritenuto proporzionale alle tensioni che portano a rottura il componente. Per ogni prova sono stati confrontati il Kurtosis e altri parametri statistici dell’eccitazione e della risposta. I risultati ottenuti mostrano che solo le sollecitazioni non stazionarie non-Gaussiane forniscono una risposta con distribuzione di probabilità non-Gaussiana. Per gli altri profili vale invece il Teorema del Limite Centrale. Tale per cui i picchi presenti nell'eccitazione non vengono trasmessi alla risposta. Sono stati inoltre monitorati i tempi di rottura di ogni componente. L’indagine sperimentale è stata effettuata con l'obiettivo di indagare sulle caratteristiche che deve possedere l’eccitazione affinchè sia significativa per le strategie alla base del "controllo del Kurtosis".
Resumo:
In questa tesi viene trattata la trasformata di Fourier per funzioni sommabili, con particolare riguardo per il cosiddetto teorema di inversione, che permette il calcolo di sofisticati integrali reali. Viene inoltre fornito un capitolo di premesse di analisi complessa, utili al calcolo esplicito di trasformate di Fourier.
Resumo:
Scopo di questo elaborato è la trattazione del momento di inerzia di un sistema meccanico rispetto ad una retta, con particolare attenzione alla struttura geometrica associata a questa nozione, ovvero all’ellissoide di inerzia. Si parte dalla definizione delle grandezze meccaniche fondamentali, passando per le equazioni cardinali della dinamica, arrivando a dimostrare il teorema di König. Viene poi studiato il momento di inerzia ed evidenziato il suo ruolo importante per la determinazione del momento angolare e dell’energia cinetica: in particolare è emersa la centralità dell’ellissoide d’inerzia. Si conclude con la dimostrazione del teorema di Huyghens e alcuni esempi espliciti di calcolo dell’ellissoide di inerzia.
Resumo:
Scopo della tesi è presentare alcuni aspetti della teoria spettrale per operatori compatti definiti su spazi di Hilbert separabili. Il primo capitolo è dedicato al Teorema di esistenza di una base numerabile di autovettori, per operatori compatti autoaggiunti. Nel secondo capitolo sono presentate alcune applicazioni dirette al Laplaciano. Viene dimostrato il teorema di immersione di Sobolev, e come conseguenza dell'immersione compatta, si prova che l'inverso del Laplaciano su aperti limitati è un operatore compatto autoaggiunto. Conseguentemente viene determinata la base dei suoi autovettori, che in dimensione uno è la classica serie di Fourier. Nel terzo capitolo vengono determinate le espressioni analitiche delle basi di autovettori sul quadrato e il cerchio unitario.
Resumo:
In questo lavoro studiamo le funzioni armoniche e le loro proprietà: le formule di media, il principio del massimo e del minimo (forte e debole), la disuguaglianza di Harnack e il teorema di Louiville. Successivamente scriviamo la prima e la seconda identità di Green, che permettono di ottenere esplicitamente la soluzione fondamentale dell’equazione di Laplace, tramite il calcolo delle soluzioni radiali del Laplaciano. Introduciamo poi la funzione di Green, da cui si ottiene una formula di rappresentazione per le funzioni armoniche. Se il dominio di riferimento è una palla, la funzione di Green può essere determinata esplicitamente, e ciò conduce alla rappresentazione integrale di Poisson per le funzioni armoniche in una palla.
Resumo:
Gli spazi di Teichmuller nacquero come risposta ad un problema posto diversi anni prima da Bernhard Riemann, che si domandò in che modo poter parametrizzare le strutture complesse supportate da una superficie fissata; in questo lavoro di tesi ci proponiamo di studiarli in maniera approfondita. Una superficie connessa, orientata e dotata di struttura complessa, prende il nome di superficie di Riemann e costituisce l’oggetto principe su cui si basa l’intero studio affrontato nelle pagine a seguire. Il teorema di uniformizzazione per le superfici di Riemann permette di fare prima distinzione netta tra esse, classificandole in superfici ellittiche, piatte o iperboliche. Due superfici di Riemann R ed S si dicono equivalenti se esiste un biolomorfismo f da R in S, e si dice che hanno la stessa struttura complessa. Certamente se le due superfici hanno genere diverso non possono essere equivalenti. Tuttavia, se R ed S sono superfci con lo stesso genere g ma non equivalenti, è comunque possibile dotare R di una struttura complessa, diversa dalla precedente, che la renda equivalente ad S. Questo permette di osservare che R è in grado di supportare diverse strutture complesse non equivalenti tra loro. Lo spazio di Teichmuller Tg di R è definito come lo spazio che parametrizza tutte le strutture complesse su R a meno di biolomorfismo. D’altra parte ogni superficie connessa, compatta e orientata di genere maggiore o uguale a 2 è in grado di supportare una struttura iperbolica. Il collegamento tra il mondo delle superfici di Riemann con quello delle superfici iperboliche è stato dato da Gauss, il quale provò che per ogni fissata superficie R le metriche iperboliche sono in corrispondenza biunivoca con le strutture complesse supportate da R stessa. Questo teorema permette di fornire una versione della definizione di Tg per superfici iperboliche; precisamente due metriche h1, h2 su R sono equivalenti se e soltanto se esiste un’isometria φ : (R, h1 ) −→ (R, h2 ) isotopa all’identità. Pertanto, grazie al risultato di Gauss, gli spazi di Teichmuller possono essere studiati sia dal punto di vista complesso, che da quello iperbolico.
Resumo:
In questa tesi si è data una dimostrazione dovuta ad Andreotti e Frenkel del Teorema di Lefschetz, utilizzando gli strumenti e i risultati della Teoria di Morse.
Resumo:
L’assioma di scelta ha una preistoria, che riguarda l’uso inconsapevole e i primi barlumi di consapevolezza che si trattasse di un nuovo principio di ragionamento. Lo scopo della prima parte di questa tesi è quello di ricostruire questo percorso di usi più o meno impliciti e più o meno necessari che rivelarono la consapevolezza non solo del fatto che fosse indispensabile introdurre un nuovo principio, ma anche che il modo di “fare matematica” stava cambiando. Nei capitoli 2 e 3, si parla dei moltissimi matematici che, senza rendersene conto, utilizzarono l’assioma di scelta nei loro lavori; tra questi anche Cantor che appellandosi alla banalità delle dimostrazioni, evitava spesso di chiarire le situazioni in cui era richiesta questa particolare assunzione. Il capitolo 2 è dedicato ad un caso notevole e rilevante dell’uso inconsapevole dell’Assioma, di cui per la prima volta si accorse R. Bettazzi nel 1892: l’equivalenza delle due nozioni di finito, quella di Dedekind e quella “naturale”. La prima parte di questa tesi si conclude con la dimostrazione di Zermelo del teorema del buon ordinamento e con un’analisi della sua assiomatizzazione della teoria degli insiemi. La seconda parte si apre con il capitolo 5 in cui si parla dell’intenso dibattito sulla dimostrazione di Zermelo e sulla possibilità o meno di accettare il suo Assioma, che coinvolse i matematici di tutta Europa. In quel contesto l’assioma di scelta trovò per lo più oppositori che si appellavano ad alcune sue conseguenze apparentemente paradossali. Queste conseguenze, insieme alle molte importanti, sono analizzate nel capitolo 6. Nell’ultimo capitolo vengono riportate alcune tra le molte equivalenze dell’assioma di scelta con altri enunciati importanti come quello della tricotomia dei cardinali. Ci si sofferma poi sulle conseguenze dell’Assioma e sulla sua influenza sulla matematica del Novecento, quindi sulle formulazioni alternative o su quelle più deboli come l’assioma delle scelte dipendenti e quello delle scelte numerabili. Si conclude con gli importanti risultati, dovuti a Godel e a Cohen sull’indipendenza e sulla consistenza dell’assioma di scelta nell’ambito della teoria degli insiemi di Zermelo-Fraenkel.
Resumo:
In questa tesi si mostra che la caratteristica di Eulero e l'orientabilità (o non orientabilità) sono invarianti topologici per le superfici compatte e si studia il teorema di classificazione per tali superfici.
Resumo:
Lo scopo di questa tesi è lo studio della risolubilità per radicali di equazioni polinomiali nel caso in cui il campo dei coefficienti del polinomio abbia caratteristica zero. Nel primo capitolo vengono richiamati i principali risultati riguardanti la teoria di Galois. Nel secondo capitolo si introducono le nozioni di gruppo risolubile e gruppo semplice analizzandone le proprietà. Nel terzo capitolo si definiscono le estensioni di campi radicali e risolubili. Viene inoltre dimostrato il teorema di Galois che mette in evidenza il legame tra gruppi risolubili ed estensioni risolubili. Infine, nell'ultimo capitolo, si applicano i risultati ottenuti al problema della risolubilità per radicali delle equazioni polinomiali dando anche diversi esempi. In particolare viene analizzato il caso del polinomio universale di grado n.
Resumo:
Si dimostra che una classe di trasformazioni espandenti a tratti sull'intervallo unitario soddisfa le ipotesi di un teorema di analisi funzionale contenuto nell'articolo "Rare Events, Escape Rates and Quasistationarity: Some Exact Formulae" di G. Keller e C. Liverani. Si considera un sistema dinamico aperto, con buco di misura epsilon. Se al diminuire di epsilon i buchi costituiscono una famiglia decrescente di sottointervalli di I, e per epsilon che tende a zero essi tendono a un buco formato da un solo punto, allora il teorema precedente consente di dimostrare la differenziabilità del tasso di fuga del sistema aperto, visto come funzione della dimensione del buco. In particolare, si ricava una formula esplicita per l'espansione al prim'ordine del tasso di fuga .
Resumo:
Questo elaborato presenta gli elementi di base della Teoria degli Spazi di Hilbert, con particolare attenzione al Teorema della Proiezione sui convessi e ai sistemi ortonormali completi.
Resumo:
Il teorema di Chevalley-Shephard-Todd è un importante risultato del 1954/1955 nella teoria degli invarianti polinomiali sotto l'azione del gruppo delle matrici invertibili. Lo scopo di questa tesi è presentare e dimostrare il teorema nella versione in cui l'anello dei polinomi ha come campo base R e di vedere alcuni esempi concreti di applicazione del teorema. Questa dimostrazione può essere generalizzata facilmente avendo come campo base un qualsiasi campo K di caratteristica 0.