1000 resultados para indirizzo :: 741 :: Curriculum A: Scienze informatiche
Resumo:
The first chapter of this work has the aim to provide a brief overview of the history of our Universe, in the context of string theory and considering inflation as its possible application to cosmological problems. We then discuss type IIB string compactifications, introducing the study of the inflaton, a scalar field candidated to describe the inflation theory. The Large Volume Scenario (LVS) is studied in the second chapter paying particular attention to the stabilisation of the Kähler moduli which are four-dimensional gravitationally coupled scalar fields which parameterise the size of the extra dimensions. Moduli stabilisation is the process through which these particles acquire a mass and can become promising inflaton candidates. The third chapter is devoted to the study of Fibre Inflation which is an interesting inflationary model derived within the context of LVS compactifications. The fourth chapter tries to extend the zone of slow-roll of the scalar potential by taking larger values of the field φ. Everything is done with the purpose of studying in detail deviations of the cosmological observables, which can better reproduce current experimental data. Finally, we present a slight modification of Fibre Inflation based on a different compactification manifold. This new model produces larger tensor modes with a spectral index in good agreement with the date released in February 2015 by the Planck satellite.
Resumo:
Dai Sumeri a Galileo lo studio dei cinque pianeti conosciuti era stato effettuato ad occhio nudo e aveva consentito di comprendere le modalità del loro moto. Con Galileo gli strumenti tecnologici sono posti a servizio della scienza, per migliorare le prestazioni dei sensi umani. La ricerca subisce così una netta accelerazione che porta, nell'arco di soli tre secoli, alla scoperta dei satelliti di Giove e dei pianeti Urano e Nettuno. Quest'ultima è considerata il trionfo della matematica perché effettuata esclusivamente con lunghi e complessi calcoli.
Resumo:
Questo scritto mira a fare una panoramica dei problemi legati alla sicurezza della comunicazione tra componenti interne dei veicoli e delle soluzioni oggigiorno disponibili. Partendo con una descrizione generale del circuito interno dell’auto analizzeremo i suoi punti di accesso e discuteremo i danni prodotti dalla sua manomissione illecita. In seguito vedremo se ´è possibile prevenire tali attacchi dando un’occhiata alle soluzioni disponibili e soffermandoci in particolare sui moduli crittografici e le loro applicazioni. Infine presenteremo l’implementazione pratica di un protocollo di autenticazione tra ECUs e una dimostrazione matematica della sua sicurezza.
Resumo:
Enunciati indipendenti dagli assiomi dell'aritmetica di Peano; è rivolta particolare attenzione all'indipendenza del teorema di Goodstein.
Resumo:
Scopo della modellizzazione delle stringhe di DNA è la formulazione di modelli matematici che generano sequenze di basi azotate compatibili con il genoma esistente. In questa tesi si prendono in esame quei modelli matematici che conservano un'importante proprietà, scoperta nel 1952 dal biochimico Erwin Chargaff, chiamata oggi "seconda regola di Chargaff". I modelli matematici che tengono conto delle simmetrie di Chargaff si dividono principalmente in due filoni: uno la ritiene un risultato dell'evoluzione sul genoma, mentre l'altro la ipotizza peculiare di un genoma primitivo e non intaccata dalle modifiche apportate dall'evoluzione. Questa tesi si propone di analizzare un modello del secondo tipo. In particolare ci siamo ispirati al modello definito da da Sobottka e Hart. Dopo un'analisi critica e lo studio del lavoro degli autori, abbiamo esteso il modello ad un più ampio insieme di casi. Abbiamo utilizzato processi stocastici come Bernoulli-scheme e catene di Markov per costruire una possibile generalizzazione della struttura proposta nell'articolo, analizzando le condizioni che implicano la validità della regola di Chargaff. I modelli esaminati sono costituiti da semplici processi stazionari o concatenazioni di processi stazionari. Nel primo capitolo vengono introdotte alcune nozioni di biologia. Nel secondo si fa una descrizione critica e prospettica del modello proposto da Sobottka e Hart, introducendo le definizioni formali per il caso generale presentato nel terzo capitolo, dove si sviluppa l'apparato teorico del modello generale.
Resumo:
In questa trattazione si introduce il concetto di catena di Markov nascosta: una coppia di processi stocastici (X,O), dove X è una catena di Markov non osservabile direttamente e O è il processo stocastico delle osservazioni, dipendente istante per istante solo dallo stato corrente della catena X. In prima istanza si illustrano i metodi per la soluzione di tre problemi classici, dato un modello di Markov nascosto e una sequenza di segnali osservati: valutare la probabilità della osservazione nel modello, trovare la sequenza nascosta di stati più probabile e aggiornare il modello per rendere più probabile l'osservazione. In secondo luogo si applica il modello ai giochi stocastici, nel caso in cui solo uno dei giocatori non è a conoscenza del gioco in ogni turno, ma può cercare di ottenere informazioni utili osservando le mosse dell'avversario informato. In particolare si cercano strategie basate sul concetto di catena di Markov nascoste e si analizzano i risultati ottenuti per valutare l'efficienza dell'approccio.
Resumo:
In questa tesi è esposta un'applicazione del metodo della parametrice a equazioni integro-differenziali. E' stata calcolata la soluzione fondamentale per l'operatore associato ad un processo Wiener-Poisson e, in seguito, lo stesso metodo è stato applicato ad equazioni stocastiche lineari.
Resumo:
Il mio lavoro di tesi parte dall’idea di voler indagare su quanto fatto in una normale azione d’aula nel momento in cui vengono presentati i polinomi, ovvero nel momento in cui si presenta agli studenti quello che comunemente viene chiamato “calcolo letterale”. In questo passaggio, un ruolo fondamentale è quello rivestito dagli insegnanti, oltre che dai libri di testo, e per questo ho deciso di seguire come i primi affrontano l’argomento polinomi in classe: come e se questi vengono definiti, e se le definizioni utilizzate sono delle vere e proprie definizioni formali, o seguono altri schemi.
Resumo:
Lo scopo di questo lavoro è costruire uno strumento per valutare il senso del numero negli studenti di due scuole secondarie di primo grado, l'una che predilige una didattica di stampo tradizionale, l'altra innovativa. Dopo aver descritto il senso del numero nelle quattro componenti cognitive e comportamentali individuate si analizzano i risultati dei suddetti studenti ad un test, composto da quesiti presi dalle valutazioni nazionali INVALSI ed internazionali TIMSS, i quali conducono ad osservare se e come una di queste ultime componenti è prevalente rispetto ad un'altra, e se il senso del numero può andare perso nel corso degli anni se si privilegia un approccio formale all'aritmetica piuttosto che la creazione di ambienti di apprendimento significativi che possano stimolare la creatività, la scoperta e la coproduzione di conoscenza.
Resumo:
This thesis is dedicated to the Tits-Kantor-Koecher (TKK) construction which establishes a bijective correspondence between unital Jordan algebras and shortly graded Lie algebras with Z-grading induced by an sl_2-triple. It is based on the observation that if g is a Lie algebra with a short Z-grading and f lies in g_1, then the formula ab=[[a,f],b] defines a structure of a Jordan algebra on g_{-1}. The TKK construction has been extended to Jordan triple systems and, more recently, to the so-called Kantor triple systems. These generalizations are studied in the thesis.
Resumo:
Richiamo di elementi di algebra, tra cui: polinomi, ordini monomiali e base di Gröbner per ideali e sottomoduli con anche algoritmo FGLM. Descrizione dei codici, dei codici lineari, codifica e decodifica, matrice generatrice, matrice forma standard, matrice di controllo parità, codici ciclici con corrispondenza con ideali e polinomi generatori. Codice Reed-Solomon caso particolare di codice ciclico. Codici ciclici m-dimensionali e codifica sistematica con basi di Gröbner. Algoritmo di decodifica per Reed-Solomon con soluzione chiave e utilizzando basi di Gröbner sui sottomoduli.
Resumo:
In questo lavoro viene introdotto il metodo Bootstrap, sviluppato a partire dal 1979 da Bradley Efron. Il Bootstrap è una tecnica statistica di ricampionamento basata su calcoli informatici, e quindi definita anche computer-intensive. In particolare vengono analizzati i vantaggi e gli svantaggi di tale metodo tramite esempi con set di dati reali implementati tramite il software statistico R. Tali analisi vertono su due tra i principali utilizzi del Bootstrap, la stima puntuale e la costruzione di intervalli di confidenza, basati entrambi sulla possibilità di approssimare la distribuzione campionaria di un qualsiasi stimatore, a prescindere dalla complessità di calcolo.
Resumo:
Questa tesi riguarda l'analisi di immagini astronomiche. In particolare esamineremo tecniche che permettono l'elaborazione di immagini. Si parlerà di operazioni di base che comprendono le usuali operazioni matematiche e le trasformazioni geometriche fornendo alcuni esempi di applicazioni. Parleremo inoltre approfonditamente dell'operazione di convoluzione tra immagini e delle sue proprietà. Successivamente tratteremo in modo approfondito la teoria di Fourier, a partire dai suoi lavori sulle serie omonime fino allo sviluppo dell'algoritmo FFT. Vedremo inoltre svariate applicazioni della trasformata di Fourier all'analisi di immagini. Per concludere parleremo di deconvoluzione, analizzando in particolare due algoritmi deconvolutivi, l'algoritmo di Van Cittert e l'algoritmo di Richardson-Lucy.
Resumo:
Analisi dei modelli statistici alla base delle indagini di valutazione matematica e confronto tra Pisa e Timss
Resumo:
Molti concetti basilari dell'Analisi Matematica si fondano sulla definizione di limite, della quale si è avuta una formulazione rigorosa solo nel XIX secolo, grazie a Cauchy e a Weierstrass. Il primo capitolo ripercorre brevemente le tappe storiche di un percorso lungo e difficile, durato circa 2000 anni, evidenziando le difficoltà dei grandi matematici che si sono occupati dei concetti infinitesimali. Nel secondo capitolo vengono esposte le possibili cause delle difficoltà degli studenti nell'apprendimento dei limiti. Nel terzo capitolo vengono descritte ed analizzate le risposte degli studenti liceali ed universitari ad un questionario sui limiti.