153 resultados para poliedri formula di Eulero teorema di rigidità di Cauchy
Resumo:
Nella seguente tesi sono state illustrate alcune proprietà della volatilità implicita, una variabile molto importante nell'ambito finanziario, che viene utilizzata nella formula di Black & Scholes per ottenere il prezzo osservato; infatti essendo il prezzo dell'opzione una funzione invertibile della volatilità ad ogni prezzo quotato dell'opzione corrisponde un unico valore della volatilità, detta appunto volatilità implicita.
Resumo:
Questo lavoro prende in esame lo schema di Hilbert di punti di C^2, il quale viene descritto assieme ad alcune sue proprietà, ad esempio la sua struttura hyper-kahleriana. Lo scopo della tesi è lo studio del polinomio di Poincaré di tale schema di Hilbert: ciò che si ottiene è una espressione del tipo serie di potenze, la quale è un caso particolare di una formula molto più generale, nota con il nome di formula di Goettsche.
Resumo:
In questa tesi si presenta l’attività didattica "Fascinating World of Geometric Forms", la relativa sperimentazione fatta su un campione di 175 studenti al quarto anno di scuola secondaria di secondo grado e i risultati ottenuti. In questo progetto, grazie alla penna 3D, è stato possibile fare matematica costruttiva in classe. Gli studenti hanno potuto disegnare e costruire nello spazio 3D, senza più essere costretti a disegnare in prospettiva sul foglio. La ricerca principalmente tenta di sviluppare l'intuito geometrico, pertanto è facilmente adattabile a studenti di varie età. Si propongono una serie di attività volte a rispondere alla domanda "Come uscire dal piano?" e, a tal proposito, si suggeriscono vari metodi: aggiungere la profondità agli elementi del piano; comporre sviluppi piani di poliedri; ruotare figure geometriche piane limitate attorno a un asse contenuto nel piano della figura; comporre nello spazio sezioni piane di quadriche. Questo progetto di ricerca, sviluppato sotto la supervisione del professor Alberto Parmeggiani del Dipartimento di Matematica di Bologna e in collaborazione con il professor Gianni Brighetti del Dipartimento di Psicologia di Bologna, si pone come obiettivo quello di avvicinare gli studenti allo studio della geometria dello spazio e, soprattutto, di sviluppare in loro la capacità di creare immagini mentali e concetti figurali.
Resumo:
Nell'elaborato si introduce l'operatore del calore e le funzioni caloriche mostrandone alcuni esempi. Di seguito si deduce la soluzione fondamentale dell'operatore H evidenziandone alcune importanti proprietà. Si procede, poi, con l'introduzione dell'Identità di Green per l'operatore del calore e da questa si ricava la formula di media per le funzioni caloriche. Grazie a tale formula di media si evidenzia una cruciale proprietà delle funzioni caloriche: la loro regolarità C-infinito. Di seguito si deduce un'espressione migliorata per la formula di media calorica avente come vantaggio quello di avere un nucleo limitato. Si procede, quindi, mostrando alcune conseguenze dell'espressione migliorata dimostrata: si ricava, infatti, in modo diretto la disuguaglianza di Harnack e il principio di massimo forte. L'elaborato procede, poi, con lo studio del problema di Cauchy relativo all'operatore del calore. Infine si analizzano i teoremi di Liouville per le funzioni caloriche.
Resumo:
I convertible bonds sono degli strumenti finanziari che conferiscono al suo possessore la facoltà di scegliere se, una volta scaduta l'obbligazione, essere rimborsato tramite una somma di denaro (valore nominale) oppure convertire l'obbligazione in un numero predefinito di azioni. Successivamente si è trattato l’argomento della tesi, i reverse convertible bonds. Queste obbligazioni sono simili ai convertible bonds con la differenza che in tal caso il diritto di scegliere se convertire o meno l'obbligazione in azioni è lasciato all'emittente e non al sottoscrittore. I reverse convertible si ottengono dalla combinazione di un coupon bond ordinario (senza l'opzione di conversione) a breve termine e di un'opzione put sulle azioni sottostanti. E' stata analizzata la formula di valutazione dei reverse convertible bonds, data dalla differenza tra il prezzo di un coupon-bond ordinario emesso dalla stessa società e il prezzo di un'opzione put (quest'ultimo moltiplicato per il rapporto di conversione, ossia per il numero di azioni che si ottengono dalla conversione di ciascuna obbligazione convertibile). E’ stata poi fatta un’analisi empirica dei prezzi dei reverse convertible bonds. Sono stati calcolati i prezzi di 7 reverse convertible utilizzando i dati forniti dal database finanziario e macroeconomico, Thomson Reuters Datastream.I prezzi calcolati sono stati poi confrontati con i prezzi di mercato di tali obbligazioni relativamente allo stesso istante temporale, il giorno 6/6/2016.
Resumo:
In questa tesi tratteremo alcune applicazioni della teoria delle distribuzioni, specialmente di quelle temperate. Nei primi capitoli introdurremo i concetti fondamentali di questa teoria e cercheremo di fornire al lettore tutti gli strumenti necessari per affrontare l’argomento principale: la ricerca delle soluzioni fondamentali per un operatore lineare a coefficienti costanti e la risoluzione di problemi differenziali per essi. Infine applicheremo quanto studiato, all’operatore delle onde. Conclude la tesi un’appendice in cui verranno trattate le distribuzioni a simmetria radiale, utili per affrontare il problema di Cauchy per l’equazione delle onde.
Resumo:
Il punto centrale della tesi è stato dimostrare il Teorema di Koebe per le funzioni armoniche. È stato necessario partire da alcuni risultati di integrazione in Rn per ricavare identità e formule di rappresentazione per funzioni di classe C2, introdurre le funzioni armoniche e farne quindi una analisi accurata. Tali funzioni sono state caratterizzate tramite le formule di media e messe in relazione con le funzioni olomorfe, per le quali vale una formula simile di rappresentazione.
Resumo:
Nel lavoro si dimostrano il Teorema della Divergenza e il Teorema di Stokes e le sue generalizzazioni a una curva chiusa di ordine k e a una varietà M, n-dimensionale, orientata con bordo. Successivamente si espongono due applicazioni alla fisica: l'elettromagnetismo e la formula del rotore. Nel primo caso si mostra come applicando il Teorema alle leggi di Biot-Savarat e di Faraday si ottengono le equazioni di Maxwell; nel secondo invece si osserva come il rotore rappresenti la densità superficiale di circuitazione.
Resumo:
In questa tesi è trattato il tema della soddisfacibilità booleana o proposizionale, detta anche SAT, ovvero il problema di determinare se una formula booleana è soddisfacibile o meno. Soddisfacibile significa che è possibile assegnare le variabili in modo che la formula assuma il valore di verità vero; viceversa si dice insoddisfacibile se tale assegnamento non esiste e se quindi la formula esprime una funzione identicamente falsa. A tal fine si introducono degli strumenti preliminari che permetteranno di affrontare più approfonditamente la questione, partendo dalla definizione basilare di macchina di Turing, affrontando poi le classi di complessità e la riduzione, la nozione di NP-completezza e si dimostra poi che SAT è un problema NP-completo. Infine è fornita una definizione generale di SAT-solver e si discutono due dei principali algoritmi utilizzati a tale scopo.
Resumo:
Lo scopo della tesi è dimostrare un teorema che offre una condizione necessaria e sufficiente affinché un poliedro con facce identificate risulti una varietà tridimensionale. Nel primo capitolo si descrive una possibile metodologia di studio e presentazione delle superfici al fine di fare un confronto con le 3-varietà. Nel secondo capitolo, prima di studiare il teorema principale, si descrivono nozioni di topologia algebrica utili nella sua dimostrazione: la coomologia e la dualità di Poincaré. Infine il terzo capitolo è dedicato alla descrizione di due esempi di 3-varietà e ad un controesempio al teorema in dimensione 5.