41 resultados para per-survivor processing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questo elaborato mostra lo sviluppo di un plugin per la visualizzazione in Grafana di eventi provenienti dalla piattaforma semantica SEPA (SPARQL Event Processing Architecture). La principale funzione svolta dal SEPA è quella di notificare in modo asincrono i propri client rispetto al cambiamento dei risultati di una query che interroga il sottostante grafo RDF. La piattaforma trova il suo utilizzo in quei contesti caratterizzati da dati dinamici, eterogenei e non strutturati e viene impiegata principalmente come strumento per abilitare l’interoperabilità in domini come per esempio l’Internet of Things. Nasce quindi l’esigenza di disporre di strumenti per il monitoraggio e la visualizzazione di dati real-time. Grafana risulta in questo caso lo strumento ideale data la sua flessibilità, che affiancata alla sua natura open source, lo rende particolarmente interessante per lo sviluppo della soluzione proposta da VAIMEE, spinoff dell’Università di Bologna, ospitato presso il CesenaLab, luogo dove è stato svolto questo lavoro di tesi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'avanzamento nel campo della long document summarization dipende interamente dalla disponibilità di dataset pubblici di alta qualità e con testi di lunghezza considerevole. Risulta pertanto problematico il fatto che tali dataset risultino spesso solo in lingua inglese, comportandone una limitazione notevole se ci si rivolge a linguaggi le cui risorse sono limitate. A tal scopo, si propone LAWSU-IT, un nuovo dataset giudiziario per long document summarization italiana. LAWSU-IT è il primo dataset italiano di summarization ad avere documenti di grandi dimensioni e a trattare il dominio giudiziario, ed è stato costruito attuando procedure di cleaning dei dati e selezione mirata delle istanze, con lo scopo di ottenere un dataset di long document summarization di alta qualità. Inoltre, sono proposte molteplici baseline sperimentali di natura estrattiva e astrattiva con modelli stato dell'arte e approcci di segmentazione del testo. Si spera che tale risultato possa portare a ulteriori ricerche e sviluppi nell'ambito della long document summarization italiana.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uno degli obiettivi più ambizioni e interessanti dell'informatica, specialmente nel campo dell'intelligenza artificiale, consiste nel raggiungere la capacità di far ragionare un computer in modo simile a come farebbe un essere umano. I più recenti successi nell'ambito delle reti neurali profonde, specialmente nel campo dell'elaborazione del testo in linguaggio naturale, hanno incentivato lo studio di nuove tecniche per affrontare tale problema, a cominciare dal ragionamento deduttivo, la forma più semplice e lineare di ragionamento logico. La domanda fondamentale alla base di questa tesi è infatti la seguente: in che modo una rete neurale basata sull'architettura Transformer può essere impiegata per avanzare lo stato dell'arte nell'ambito del ragionamento deduttivo in linguaggio naturale? Nella prima parte di questo lavoro presento uno studio approfondito di alcune tecnologie recenti che hanno affrontato questo problema con intuizioni vincenti. Da questa analisi emerge come particolarmente efficace l'integrazione delle reti neurali con tecniche simboliche più tradizionali. Nella seconda parte propongo un focus sull'architettura ProofWriter, che ha il pregio di essere relativamente semplice e intuitiva pur presentando prestazioni in linea con quelle dei concorrenti. Questo approfondimento mette in luce la capacità dei modelli T5, con il supporto del framework HuggingFace, di produrre più risposte alternative, tra cui è poi possibile cercare esternamente quella corretta. Nella terza e ultima parte fornisco un prototipo che mostra come si può impiegare tale tecnica per arricchire i sistemi tipo ProofWriter con approcci simbolici basati su nozioni linguistiche, conoscenze specifiche sul dominio applicativo o semplice buonsenso. Ciò che ne risulta è un significativo miglioramento dell'accuratezza rispetto al ProofWriter originale, ma soprattutto la dimostrazione che è possibile sfruttare tale capacità dei modelli T5 per migliorarne le prestazioni.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I Phase-Locked Loops sono circuiti ancora oggi utilizzati per la generazione di segnali coerenti in frequenza e in fase con i segnali in ingresso, motivo per cui sono uno degli strumenti della radio scienza per la ricostruzione dei segnali scambiati con le sonde e nascosti dal rumore accumulato nel tragitto che separa le sonde stesse dalle stazioni di tracking a terra. Questa tesi illustra l'implementazione di un PLL digitale linearizzato in Matlab e Simulink in una nuova veste rispetto al modello implementato durante l'attività di tirocinio curricolare, al fine di migliorarne le prestazioni per bassi carrier-to-noise density ratios. Il capitolo 1 si compone di due parti: la prima introduce all'ambito nel quale si inserisce il lavoro proposto, ossia la determinazione d'orbita; la seconda illustra i fondamenti della teoria dei segnali. Il capitolo 2 è incentrato sull'analisi dei Phase-Locked Loops, partendo da un'introduzione teorica e approdando all'implementazione di un modello in Simulink. Il capitolo 3, infine, mostra i risultati dell'applicazione del modello implementato in Simulink nell'analisi dei segnali di una missione realmente svolta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radio Simultaneous Location and Mapping (SLAM) consists of the simultaneous tracking of the target and estimation of the surrounding environment, to build a map and estimate the target movements within it. It is an increasingly exploited technique for automotive applications, in order to improve the localization of obstacles and the target relative movement with respect to them, for emergency situations, for example when it is necessary to explore (with a drone or a robot) environments with a limited visibility, or for personal radar applications, thanks to its versatility and cheapness. Until today, these systems were based on light detection and ranging (lidar) or visual cameras, high-accuracy and expensive approaches that are limited to specific environments and weather conditions. Instead, in case of smoke, fog or simply darkness, radar-based systems can operate exactly in the same way. In this thesis activity, the Fourier-Mellin algorithm is analyzed and implemented, to verify the applicability to Radio SLAM, in which the radar frames can be treated as images and the radar motion between consecutive frames can be covered with registration. Furthermore, a simplified version of that algorithm is proposed, in order to solve the problems of the Fourier-Mellin algorithm when working with real radar images and improve the performance. The INRAS RBK2, a MIMO 2x16 mmWave radar, is used for experimental acquisitions, consisting of multiple tests performed in Lab-E of the Cesena Campus, University of Bologna. The different performances of Fourier-Mellin and its simplified version are compared also with the MatchScan algorithm, a classic algorithm for SLAM systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sempre più negli ultimi anni si interagisce con i chatbot, software che simulano una conversazione con un essere umano utilizzando il linguaggio naturale. L’elaborato di tesi mira ad uno studio più approfondito della tematica, a partire da come tale tecnologia si è evoluta nel corso degli anni. Si procede analizzando le principali applicazioni dei bot, soffermandosi anche sui cambiamenti apportati dalla pandemia di Covid-19, ed evidenziando le principali ragioni che portano aziende e singoli al loro utilizzo. Inoltre, vengono descritti i diversi tipi di bot esistenti e viene analizzato il Natural Language Processing, ramo dell’Intelligenza Artificiale che mira alla comprensione del linguaggio naturale. Nei capitoli successivi viene descritto il progetto CartBot, un’applicazione di chat mobile per l’e-grocery, implementata come un chatbot che guida il cliente all’acquisto della spesa online. Vengono descritte le tecnologie utilizzate, con particolare riferimento al software di Google Dialogflow, che permette di sviluppare bot; inoltre viene analizzata come è stata effettuata la progettazione, sia lato front-end che back-end, allegando il flowchart, un diagramma di flusso realizzato per definire la sequenza di azioni e passaggi richiesti dal bot per effettuare l’acquisto. Infine, sono descritte le varie sottosezioni di CartBot, che riguardano la visualizzazione dei prodotti e il completamento dell’ordine, allegando screenshot dell’interfaccia finale ottenuta e inserendo il codice di alcune funzioni rilevanti.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’Intelligenza Artificiale negli ultimi anni sta plasmando il futuro dell’umanità in quasi tutti i settori. È già il motore principale di diverse tecnologie emergenti come i big data, la robotica e l’IoT e continuerà ad agire come innovatore tecnologico nel futuro prossimo. Le recenti scoperte e migliorie sia nel campo dell’hardware che in quello matematico hanno migliorato l’efficienza e ridotto i tempi di esecuzione dei software. È in questo contesto che sta evolvendo anche il Natural Language Processing (NLP), un ramo dell’Intelligenza Artificiale che studia il modo in cui fornire ai computer l'abilità di comprendere un testo scritto o parlato allo stesso modo in cui lo farebbe un essere umano. Le ambiguità che distinguono la lingua naturale dalle altre rendono ardui gli studi in questo settore. Molti dei recenti sviluppi algoritmici su NLP si basano su tecnologie inventate decenni fa. La ricerca in questo settore è quindi in continua evoluzione. Questa tesi si pone l'obiettivo di sviluppare la logica di una chatbot help-desk per un'azienda privata. Lo scopo è, sottoposta una domanda da parte di un utente, restituire la risposta associata presente in una collezione domande-risposte. Il problema che questa tesi affronta è sviluppare un modello di NLP in grado di comprendere il significato semantico delle domande in input, poiché esse possono essere formulate in molteplici modi, preservando il contenuto semantico a discapito della sintassi. A causa delle ridotte dimensioni del dataset italiano proprietario su cui testare il modello chatbot, sono state eseguite molteplici sperimentazioni su un ulteriore dataset italiano con task affine. Attraverso diversi approcci di addestramento, tra cui apprendimento metrico, sono state raggiunte alte accuratezze sulle più comuni metriche di valutazione, confermando le capacità del modello proposto e sviluppato.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il lavoro di tesi presentato è nato da una collaborazione con il Politecnico di Macao, i referenti sono: Prof. Rita Tse, Prof. Marcus Im e Prof. Su-Kit Tang. L'obiettivo consiste nella creazione di un modello di traduzione automatica italiano-cinese e nell'osservarne il comportamento, al fine di determinare se sia o meno possibile l'impresa. Il trattato approfondisce l'argomento noto come Neural Language Processing (NLP), rientrando dunque nell'ambito delle traduzioni automatiche. Sono servizi che, attraverso l'ausilio dell'intelligenza artificiale sono in grado di elaborare il linguaggio naturale, per poi interpretarlo e tradurlo. NLP è una branca dell'informatica che unisce: computer science, intelligenza artificiale e studio di lingue. Dal punto di vista della ricerca, le più grandi sfide in questo ambito coinvolgono: il riconoscimento vocale (speech-recognition), comprensione del testo (natural-language understanding) e infine la generazione automatica di testo (natural-language generation). Lo stato dell'arte attuale è stato definito dall'articolo "Attention is all you need" \cite{vaswani2017attention}, presentato nel 2017 a partire da una collaborazione di ricercatori della Cornell University.\\ I modelli di traduzione automatica più noti ed utilizzati al momento sono i Neural Machine Translators (NMT), ovvero modelli che attraverso le reti neurali artificiali profonde, sono in grado effettuare traduzioni o predizioni. La qualità delle traduzioni è particolarmente buona, tanto da arrivare quasi a raggiungere la qualità di una traduzione umana. Il lavoro infatti si concentrerà largamente sullo studio e utilizzo di NMT, allo scopo di proporre un modello funzionale e che sia in grado di performare al meglio nelle traduzioni da italiano a cinese e viceversa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In questo elaborato viene trattata l’analisi del problema di soft labeling applicato alla multi-document summarization, in particolare vengono testate varie tecniche per estrarre frasi rilevanti dai documenti presi in dettaglio, al fine di fornire al modello di summarization quelle di maggior rilievo e più informative per il riassunto da generare. Questo problema nasce per far fronte ai limiti che presentano i modelli di summarization attualmente a disposizione, che possono processare un numero limitato di frasi; sorge quindi la necessità di filtrare le informazioni più rilevanti quando il lavoro si applica a documenti lunghi. Al fine di scandire la metrica di importanza, vengono presi come riferimento metodi sintattici, semantici e basati su rappresentazione a grafi AMR. Il dataset preso come riferimento è Multi-LexSum, che include tre granularità di summarization di testi legali. L’analisi in questione si compone quindi della fase di estrazione delle frasi dai documenti, della misurazione delle metriche stabilite e del passaggio al modello stato dell’arte PRIMERA per l’elaborazione del riassunto. Il testo ottenuto viene poi confrontato con il riassunto target già fornito, considerato come ottimale; lavorando in queste condizioni l’obiettivo è di definire soglie ottimali di upper-bound per l’accuratezza delle metriche, che potrebbero ampliare il lavoro ad analisi più dettagliate qualora queste superino lo stato dell’arte attuale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La tesi si incentra nello studio e utilizzo del linguaggio Scala per aspetti di ingestion, processing e plotting di dati, prestando enfasi su time series. Questa è costituita da una prima parte introduttiva sui principali argomenti, per poi concentrarsi sull’analisi dei requisiti, il modello del dominio, il design architetturale e la sua implementazione. Termina infine con qualche nota conclusiva riguardante possibili sviluppi futuri. La parte progettuale consiste nello sviluppo di un’applicazione che supporti le librerie scelte e che favorisca il processo in modo agevole. La validazione del progetto software realizzato viene fatta tramite una sequenza di varie configurazioni a dimostrarne la differenza tra la scelta di determinate opzioni: ciascuna viene accompagnata da una o pi`u immagini che ne dimostrano i risultati ottenuti a seguito dell’uso del programma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grazie all’evoluzione degli strumenti di calcolo e delle strutture digitali, le intelligenze artificiali si sono evolute considerevolmente negli ultimi anni, permettendone sempre nuove e complesse applicazioni. L’interesse del presente progetto di tesi è quello di creare un modello di studio preliminare di intelligenza artificiale definita come Rete Neurale Convoluzionale, o Convolutional Neural Network (CNN), al fine di essere impiegata nel campo della radioscienza e dell’esplorazione planetaria. In particolare, uno degli interessi principali di applicazione del modello è negli studi di geodesia compiuti tramite determinazione orbitale di satelliti artificiali nel loro moto attorno ai corpi celesti. Le accelerazioni causate dai campi gravitazionali planetari perturbano le orbite dei satelliti artificiali, queste variazioni vengono captate dai ricevitori radio a terra sottoforma di shift Doppler della frequenza del segnale, a partire dalla quale è quindi possibile determinare informazioni dettagliate sul campo di gravità e sulla struttura interna del corpo celeste in esame. Per poter fare ciò, occorre riuscire a determinare l’esatta frequenza del segnale in arrivo, il quale, per via di perdite e disturbi durante il suo tragitto, presenterà sempre una componente di rumore. Il metodo più comune per scindere la componente di informazione da quella di rumore e ricavarne la frequenza effettiva è l’applicazione di trasformate di Fourier a tempo breve, o Short-time Fourier Transform (STFT). Con l’attività sperimentale proposta, ci si è quindi posto l’obiettivo di istruire un CNN alla stima della frequenza di segnali reali sinusoidali rumorosi per avere un modello computazionalmente rapido e affidabile a supporto delle operazioni di pre-processing per missioni di radio-scienza.