43 resultados para Problema de Riemann
Resumo:
Oggetto della mia tesi è la trasformata di Fourier e la sua applicazione alla risoluzione dell'equazione del calore e dell'equazione delle onde. Nel primo capitolo ricordo la definizione di trasformata di Fourier, alcune sue proprietà e infine la definizione di Spazi di Schwartz. Nel secondo capitolo risolverò l'equazione del calore e nel terzo l'equazione delle onde.
Resumo:
La tesi analizza gli algoritmi per risolvere il problema dell'assegnamento generalizzato, e valuta in particolare le prestazioni dell'algoritmo di Posta ed altri.
Resumo:
Superfici di Riemann compatte, divisori, Teorema di Riemann Roch, immersioni nello spazio proiettivo.
Resumo:
La Word Sense Disambiguation è un problema informatico appartenente al campo di studi del Natural Language Processing, che consiste nel determinare il senso di una parola a seconda del contesto in cui essa viene utilizzata. Se un processo del genere può apparire banale per un essere umano, può risultare d'altra parte straordinariamente complicato se si cerca di codificarlo in una serie di istruzioni esguibili da una macchina. Il primo e principale problema necessario da affrontare per farlo è quello della conoscenza: per operare una disambiguazione sui termini di un testo, un computer deve poter attingere da un lessico che sia il più possibile coerente con quello di un essere umano. Sebbene esistano altri modi di agire in questo caso, quello di creare una fonte di conoscenza machine-readable è certamente il metodo che permette di affrontare il problema in maniera più diretta. Nel corso di questa tesi si cercherà, come prima cosa, di spiegare in cosa consiste la Word Sense Disambiguation, tramite una descrizione breve ma il più possibile dettagliata del problema. Nel capitolo 1 esso viene presentato partendo da alcuni cenni storici, per poi passare alla descrizione dei componenti fondamentali da tenere in considerazione durante il lavoro. Verranno illustrati concetti ripresi in seguito, che spaziano dalla normalizzazione del testo in input fino al riassunto dei metodi di classificazione comunemente usati in questo campo. Il capitolo 2 è invece dedicato alla descrizione di BabelNet, una risorsa lessico-semantica multilingua di recente costruzione nata all'Università La Sapienza di Roma. Verranno innanzitutto descritte le due fonti da cui BabelNet attinge la propria conoscenza, WordNet e Wikipedia. In seguito saranno illustrati i passi della sua creazione, dal mapping tra le due risorse base fino alla definizione di tutte le relazioni che legano gli insiemi di termini all'interno del lessico. Infine viene proposta una serie di esperimenti che mira a mettere BabelNet su un banco di prova, prima per verificare la consistenza del suo metodo di costruzione, poi per confrontarla, in termini di prestazioni, con altri sistemi allo stato dell'arte sottoponendola a diversi task estrapolati dai SemEval, eventi internazionali dedicati alla valutazione dei problemi WSD, che definiscono di fatto gli standard di questo campo. Nel capitolo finale vengono sviluppate alcune considerazioni sulla disambiguazione, introdotte da un elenco dei principali campi applicativi del problema. Vengono in questa sede delineati i possibili sviluppi futuri della ricerca, ma anche i problemi noti e le strade recentemente intraprese per cercare di portare le prestazioni della Word Sense Disambiguation oltre i limiti finora definiti.
Resumo:
La tesi si occupa di mostrare il progetto messo in atto in una classe dell’ultimo anno di liceo scientifico. Tratta un possibile approccio all’introduzione delle equazioni differenziali mediante la modellizzazione matematica. Si vuole mostrare come lo studio di problemi di diversa natura porti alla costruzione e all’utilizzo di modelli matematici, quali le equazioni differenziali. Con questo intervento didattico si propone un percorso che guida gli studenti nel processo della modellizzazione matematica, analizzandone le criticità.
Resumo:
In questa tesi si studiano alcune proprietà fondamentali delle funzioni Zeta e L associate ad una curva ellittica. In particolare, si dimostra la razionalità della funzione Zeta e l'ipotesi di Riemann per due famiglie specifiche di curve ellittiche. Si studia poi il problema dell'esistenza di un prolungamento analitico al piano complesso della funzione L di una curva ellittica con moltiplicazione complessa, attraverso l'analisi diretta di due casi particolari.
Resumo:
The purpose of this study is to analyse the regularity of a differential operator, the Kohn Laplacian, in two settings: the Heisenberg group and the strongly pseudoconvex CR manifolds. The Heisenberg group is defined as a space of dimension 2n+1 with a product. It can be seen in two different ways: as a Lie group and as the boundary of the Siegel UpperHalf Space. On the Heisenberg group there exists the tangential CR complex. From this we define its adjoint and the Kohn-Laplacian. Then we obtain estimates for the Kohn-Laplacian and find its solvability and hypoellipticity. For stating L^p and Holder estimates, we talk about homogeneous distributions. In the second part we start working with a manifold M of real dimension 2n+1. We say that M is a CR manifold if some properties are satisfied. More, we say that a CR manifold M is strongly pseudoconvex if the Levi form defined on M is positive defined. Since we will show that the Heisenberg group is a model for the strongly pseudo-convex CR manifolds, we look for an osculating Heisenberg structure in a neighborhood of a point in M, and we want this structure to change smoothly from a point to another. For that, we define Normal Coordinates and we study their properties. We also examinate different Normal Coordinates in the case of a real hypersurface with an induced CR structure. Finally, we define again the CR complex, its adjoint and the Laplacian operator on M. We study these new operators showing subelliptic estimates. For that, we don't need M to be pseudo-complex but we ask less, that is, the Z(q) and the Y(q) conditions. This provides local regularity theorems for Laplacian and show its hypoellipticity on M.
Resumo:
In questa tesi si descrivono la funzione zeta di Riemann, la costante di Eulero-Mascheroni e la funzione gamma di Eulero. Si riportano i legami tra questi e si illustra brevemente l'ipotesi di Riemann degli zeri non banali della funzione zeta, ovvero l'ipotesi della distribuzione dei numeri primi nella retta dei numeri reali.
Resumo:
Gli spazi di Teichmuller nacquero come risposta ad un problema posto diversi anni prima da Bernhard Riemann, che si domandò in che modo poter parametrizzare le strutture complesse supportate da una superficie fissata; in questo lavoro di tesi ci proponiamo di studiarli in maniera approfondita. Una superficie connessa, orientata e dotata di struttura complessa, prende il nome di superficie di Riemann e costituisce l’oggetto principe su cui si basa l’intero studio affrontato nelle pagine a seguire. Il teorema di uniformizzazione per le superfici di Riemann permette di fare prima distinzione netta tra esse, classificandole in superfici ellittiche, piatte o iperboliche. Due superfici di Riemann R ed S si dicono equivalenti se esiste un biolomorfismo f da R in S, e si dice che hanno la stessa struttura complessa. Certamente se le due superfici hanno genere diverso non possono essere equivalenti. Tuttavia, se R ed S sono superfci con lo stesso genere g ma non equivalenti, è comunque possibile dotare R di una struttura complessa, diversa dalla precedente, che la renda equivalente ad S. Questo permette di osservare che R è in grado di supportare diverse strutture complesse non equivalenti tra loro. Lo spazio di Teichmuller Tg di R è definito come lo spazio che parametrizza tutte le strutture complesse su R a meno di biolomorfismo. D’altra parte ogni superficie connessa, compatta e orientata di genere maggiore o uguale a 2 è in grado di supportare una struttura iperbolica. Il collegamento tra il mondo delle superfici di Riemann con quello delle superfici iperboliche è stato dato da Gauss, il quale provò che per ogni fissata superficie R le metriche iperboliche sono in corrispondenza biunivoca con le strutture complesse supportate da R stessa. Questo teorema permette di fornire una versione della definizione di Tg per superfici iperboliche; precisamente due metriche h1, h2 su R sono equivalenti se e soltanto se esiste un’isometria φ : (R, h1 ) −→ (R, h2 ) isotopa all’identità. Pertanto, grazie al risultato di Gauss, gli spazi di Teichmuller possono essere studiati sia dal punto di vista complesso, che da quello iperbolico.
Resumo:
Il sempre crescente numero di applicazioni di reti di sensori, robot cooperanti e formazioni di veicoli, ha fatto sì che le problematiche legate al coordinamento di sistemi multi-agente (MAS) diventassero tra le più studiate nell’ambito della teoria dei controlli. Esistono numerosi approcci per affrontare il problema, spesso profondamente diversi tra loro. La strategia studiata in questa tesi è basata sulla Teoria del Consenso, che ha una natura distribuita e completamente leader-less; inoltre il contenuto informativo scambiato tra gli agenti è ridotto al minimo. I primi 3 capitoli introducono ed analizzano le leggi di interazione (Protocolli di Consenso) che permettono di coordinare un Network di sistemi dinamici. Nel capitolo 4 si pensa all'applicazione della teoria al problema del "loitering" circolare di più robot volanti attorno ad un obiettivo in movimento. Si sviluppa a tale scopo una simulazione in ambiente Matlab/Simulink, che genera le traiettorie di riferimento di raggio e centro impostabili, a partire da qualunque posizione iniziale degli agenti. Tale simulazione è stata utilizzata presso il “Center for Research on Complex Automated Systems” (CASY-DEI Università di Bologna) per implementare il loitering di una rete di quadrirotori "CrazyFlie". I risultati ed il setup di laboratorio sono riportati nel capitolo 5. Sviluppi futuri si concentreranno su algoritmi locali che permettano agli agenti di evitare collisioni durante i transitori: il controllo di collision-avoidance dovrà essere completamente indipendente da quello di consenso, per non snaturare il protocollo di Consenso stesso.
Resumo:
In questa tesi vengono forniti risultati sulle serie di Fourier e successivamente sulle serie di Fejér, utili per poter analizzare il cosiddetto problema di Cauchy-Dirichlet per l'equazione del calore di una sbarra omogenea. Lo scopo è trovare soluzioni classiche del problema che presenta come dato iniziale dapprima una funzione di classe C^1 e successivamente una funzione solamente continua.
Resumo:
In questa tesi vengono illustrati il funzionamento, le proprietà e le modalità di scambio della criptomoneta Bitcoin. Bitcoin è una moneta digitale decentralizzata e parzialmente anonima. Viene scambiata tramite un software open source che utilizza la crittografia per garantire l'integrità e l'autenticità delle transazioni. Permette di inviare denaro digitale in maniera rapida, sicura ed economica attraverso Internet.
Resumo:
Scopo della tesi è studiare un modello di percezione cromatica, che descrive la propagazione dell'attività mediante un problema di Cauchy in spazi di Banach. Presentiamo dapprima il problema della stabilità delle soluzioni al problema di Cauchy tramite il metodo Lyapunov; prima in dimensione finita, e poi in spazi di Banach. Poi verifichiamo che l'equazione fondamentale di percezione cromatica ricade nel setting considerato e che il funzionale di Lyapunov associato verifica le ipotesi che assicurano la stabilità.