74 resultados para Learning to read
Resumo:
Questo volume di tesi, dal titolo “Sviluppo di una piattaforma per fornire contenuti formativi sfruttando la gamification: un caso di studio aziendale”, tratta argomenti quali e-learning e game-based learning e come/quando questi possono essere applicati, presentando inoltre un esempio di prototipo di applicazione web che può fungere a questo scopo. Nello specifico, il primo capitolo si compone di tre sezioni principali: la prima introduce il concetto di e-learning e le molteplici declinazioni ad esso applicabili, oltre a presentare qualche cenno di carattere storico per individuare questo fenomeno nel tempo; la seconda tratta i campi d’applicazione e le tipologie di didattica inscrivibili nel termine “Game-based learning”. Nella terza sezione, “builder per esperienze gamificate”, infine, vengono presentate e analizzate due applicazioni web che possono concorrere alla creazione di un’esperienza di formazione gamificata in ambito scolastico e/o lavorativo. Il secondo e il terzo capitolo, rispettivamente con titoli “Tecnologie” e “Applicazione web: BKM – Learning Game”, sono fortemente correlati: vengono infatti presentate le tecnologie (nello specifico HTML, CSS, Javascript, NodeJs, VueJs e JSON) utilizzate per la creazione del progetto di tesi, poi viene descritto l’applicativo web risultante nel suo complesso. Il progetto è stato implementato durante il tirocinio in preparazione della prova finale, presso l’azienda Bookmark s.r.l.
Resumo:
This thesis work contains an overview of potential alternative options to couple formate produced from CO2 with other coupling partners than formate itself. Ultimately, the intent is to produce high value chemicals from CO2 at a high selectivity and conversion, whilst keeping the required utility of electrons in the electrochemical CO2 conversion at a minimum. To select and find new coupling partners, a framework was developed upon which a broad variety of candidates were assessed and ranked. A multi-stage process was used to select first potential classes of molecules. For each class, a variety of commercially available compounds was analysed in depth for its potential suitability in the reaction with the active carbonite intermediate. This analysis has shown that a wide variety of factors come into play and especially the reactivity of the hydride catalyst poses a mayor challenge. The three major potential classes of compounds suitable for the coupling are carbon oxides (CO2 & CO), and aldehydes. As a second step the remaining options were ranked to identify which compound to test first. In this ranking the reactants sustainability, ease of commercial operation and commercial attractiveness of the compound were considered. The highest-ranking compounds that proposed the highest potential are CO2, benzaldehyde and para-formaldehyde. In proof-of-principle experiments CO2 could successfully be incorporated in the form of carbonate, oxalate and potentially formate. The overall incorporation efficiency based on the hydride consumption was shown to be 50%. It is suggested to continue this work with mechanistic studies to understand the reaction in detail as, based on further gained knowledge, the reaction can then be optimized towards optimal CO2 incorporation in the form of oxalate.
Resumo:
L’obiettivo principale della tesi, è quello di mettere a confronto soluzioni basate su tecnologie diverse e individuare la soluzione migliore che permetta di stabilire se le persone inquadrate in un’immagine indossano correttamente o meno la mascherina protettiva come previsto dalle norme anti-covid. Per raggiungere l’obiettivo verranno confrontate diverse architetture costruite per lo stesso scopo e che si basano sui principi di Machine Learning e Deep Learning, e verranno messe in funzione su insieme di dataset individuati, che sono stati creati per propositi affini.
Resumo:
Reinforcement learning is a particular paradigm of machine learning that, recently, has proved times and times again to be a very effective and powerful approach. On the other hand, cryptography usually takes the opposite direction. While machine learning aims at analyzing data, cryptography aims at maintaining its privacy by hiding such data. However, the two techniques can be jointly used to create privacy preserving models, able to make inferences on the data without leaking sensitive information. Despite the numerous amount of studies performed on machine learning and cryptography, reinforcement learning in particular has never been applied to such cases before. Being able to successfully make use of reinforcement learning in an encrypted scenario would allow us to create an agent that efficiently controls a system without providing it with full knowledge of the environment it is operating in, leading the way to many possible use cases. Therefore, we have decided to apply the reinforcement learning paradigm to encrypted data. In this project we have applied one of the most well-known reinforcement learning algorithms, called Deep Q-Learning, to simple simulated environments and studied how the encryption affects the training performance of the agent, in order to see if it is still able to learn how to behave even when the input data is no longer readable by humans. The results of this work highlight that the agent is still able to learn with no issues whatsoever in small state spaces with non-secure encryptions, like AES in ECB mode. For fixed environments, it is also able to reach a suboptimal solution even in the presence of secure modes, like AES in CBC mode, showing a significant improvement with respect to a random agent; however, its ability to generalize in stochastic environments or big state spaces suffers greatly.
Resumo:
In questa tesi si trattano lo studio e la sperimentazione di un modello generativo retrieval-augmented, basato su Transformers, per il task di Abstractive Summarization su lunghe sentenze legali. La sintesi automatica del testo (Automatic Text Summarization) è diventata un task di Natural Language Processing (NLP) molto importante oggigiorno, visto il grandissimo numero di dati provenienti dal web e banche dati. Inoltre, essa permette di automatizzare un processo molto oneroso per gli esperti, specialmente nel settore legale, in cui i documenti sono lunghi e complicati, per cui difficili e dispendiosi da riassumere. I modelli allo stato dell’arte dell’Automatic Text Summarization sono basati su soluzioni di Deep Learning, in particolare sui Transformers, che rappresentano l’architettura più consolidata per task di NLP. Il modello proposto in questa tesi rappresenta una soluzione per la Long Document Summarization, ossia per generare riassunti di lunghe sequenze testuali. In particolare, l’architettura si basa sul modello RAG (Retrieval-Augmented Generation), recentemente introdotto dal team di ricerca Facebook AI per il task di Question Answering. L’obiettivo consiste nel modificare l’architettura RAG al fine di renderla adatta al task di Abstractive Long Document Summarization. In dettaglio, si vuole sfruttare e testare la memoria non parametrica del modello, con lo scopo di arricchire la rappresentazione del testo di input da riassumere. A tal fine, sono state sperimentate diverse configurazioni del modello su diverse tipologie di esperimenti e sono stati valutati i riassunti generati con diverse metriche automatiche.
Resumo:
Dopo lo sviluppo dei primi casi di Covid-19 in Cina nell’autunno del 2019, ad inizio 2020 l’intero pianeta è precipitato in una pandemia globale che ha stravolto le nostre vite con conseguenze che non si vivevano dall’influenza spagnola. La grandissima quantità di paper scientifici in continua pubblicazione sul coronavirus e virus ad esso affini ha portato alla creazione di un unico dataset dinamico chiamato CORD19 e distribuito gratuitamente. Poter reperire informazioni utili in questa mole di dati ha ulteriormente acceso i riflettori sugli information retrieval systems, capaci di recuperare in maniera rapida ed efficace informazioni preziose rispetto a una domanda dell'utente detta query. Di particolare rilievo è stata la TREC-COVID Challenge, competizione per lo sviluppo di un sistema di IR addestrato e testato sul dataset CORD19. Il problema principale è dato dal fatto che la grande mole di documenti è totalmente non etichettata e risulta dunque impossibile addestrare modelli di reti neurali direttamente su di essi. Per aggirare il problema abbiamo messo a punto nuove soluzioni self-supervised, a cui abbiamo applicato lo stato dell'arte del deep metric learning e dell'NLP. Il deep metric learning, che sta avendo un enorme successo soprattuto nella computer vision, addestra il modello ad "avvicinare" tra loro immagini simili e "allontanare" immagini differenti. Dato che sia le immagini che il testo vengono rappresentati attraverso vettori di numeri reali (embeddings) si possano utilizzare le stesse tecniche per "avvicinare" tra loro elementi testuali pertinenti (e.g. una query e un paragrafo) e "allontanare" elementi non pertinenti. Abbiamo dunque addestrato un modello SciBERT con varie loss, che ad oggi rappresentano lo stato dell'arte del deep metric learning, in maniera completamente self-supervised direttamente e unicamente sul dataset CORD19, valutandolo poi sul set formale TREC-COVID attraverso un sistema di IR e ottenendo risultati interessanti.
Resumo:
L’obiettivo della tesi è stato quello di valutare la vulnerabilità sismica di edifici ordinari in muratura tipici del costruito del Comune di Maranello (MO), e di stimare le curve di fragilità. Vengono individuate le tipologie strutturali in muratura tipiche degli edifici del Comune, che viene suddiviso in comparti secondo il metodo CARTIS. Lo scopo è stato di definire quali sono le tipologie in muratura più vulnerabili, e quindi i comparti del Comune costituiti dagli edifici in muratura più fragili dal punto di vista sismico. La valutazione della vulnerabilità sismica di alcuni edifici rappresentativi delle tipologie murarie esistenti nel territorio analizzato è stata eseguita mediante due metodologie: la prima è una metodologia speditiva chiamata RE.SIS.TO., una valutazione semplificata sviluppata dall’Università degli Studi di Bologna, con l’obiettivo di definire lo stato di criticità degli edifici e di definire la priorità di intervento in tempi brevi; la seconda è una metodologia di valutazione più accurata eseguita attraverso l’analisi statica non lineare con il software 3Muri, un programma per il calcolo sismico delle strutture in muratura.
Resumo:
The aim of TinyML is to bring the capability of Machine Learning to ultra-low-power devices, typically under a milliwatt, and with this it breaks the traditional power barrier that prevents the widely distributed machine intelligence. TinyML allows greater reactivity and privacy by conducting inference on the computer and near-sensor while avoiding the energy cost associated with wireless communication, which is far higher at this scale than that of computing. In addition, TinyML’s efficiency makes a class of smart, battery-powered, always-on applications that can revolutionize the collection and processing of data in real time. This emerging field, which is the end of a lot of innovation, is ready to speed up its growth in the coming years. In this thesis, we deploy three model on a microcontroller. For the model, datasets are retrieved from an online repository and are preprocessed as per our requirement. The model is then trained on the split of preprocessed data at its best to get the most accuracy out of it. Later the trained model is converted to C language to make it possible to deploy on the microcontroller. Finally, we take step towards incorporating the model into the microcontroller by implementing and evaluating an interface for the user to utilize the microcontroller’s sensors. In our thesis, we will have 4 chapters. The first will give us an introduction of TinyML. The second chapter will help setup the TinyML Environment. The third chapter will be about a major use of TinyML in Wake Word Detection. The final chapter will deal with Gesture Recognition in TinyML.
Resumo:
A differenza di quanto avviene nel commercio tradizionale, in quello online il cliente non ha la possibilità di toccare con mano o provare il prodotto. La decisione di acquisto viene maturata in base ai dati messi a disposizione dal venditore attraverso titolo, descrizioni, immagini e alle recensioni di clienti precedenti. É quindi possibile prevedere quanto un prodotto venderà sulla base di queste informazioni. La maggior parte delle soluzioni attualmente presenti in letteratura effettua previsioni basandosi sulle recensioni, oppure analizzando il linguaggio usato nelle descrizioni per capire come questo influenzi le vendite. Le recensioni, tuttavia, non sono informazioni note ai venditori prima della commercializzazione del prodotto; usando solo dati testuali, inoltre, si tralascia l’influenza delle immagini. L'obiettivo di questa tesi è usare modelli di machine learning per prevedere il successo di vendita di un prodotto a partire dalle informazioni disponibili al venditore prima della commercializzazione. Si fa questo introducendo un modello cross-modale basato su Vision-Language Transformer in grado di effettuare classificazione. Un modello di questo tipo può aiutare i venditori a massimizzare il successo di vendita dei prodotti. A causa della mancanza, in letteratura, di dataset contenenti informazioni relative a prodotti venduti online che includono l’indicazione del successo di vendita, il lavoro svolto comprende la realizzazione di un dataset adatto a testare la soluzione sviluppata. Il dataset contiene un elenco di 78300 prodotti di Moda venduti su Amazon, per ognuno dei quali vengono riportate le principali informazioni messe a disposizione dal venditore e una misura di successo sul mercato. Questa viene ricavata a partire dal gradimento espresso dagli acquirenti e dal posizionamento del prodotto in una graduatoria basata sul numero di esemplari venduti.
Resumo:
The inferior alveolar nerve (IAN) lies within the mandibular canal, named inferior alveolar canal in literature. The detection of this nerve is important during maxillofacial surgeries or for creating dental implants. The poor quality of cone-beam computed tomography (CBCT) and computed tomography (CT) scans and/or bone gaps within the mandible increase the difficulty of this task, posing a challenge to human experts who are going to manually detect it and resulting in a time-consuming task.Therefore this thesis investigates two methods to automatically detect the IAN: a non-data driven technique and a deep-learning method. The latter tracks the IAN position at each frame leveraging detections obtained with the deep neural network CenterNet, fined-tuned for our task, and temporal and spatial information.
Resumo:
Extra cellular vesicles are membrane bound and lipid based nano particles having the size range of 30 to 1000 nm released by a plethora of cells. Their prime function is cellular communication but in the recent studies, the potential of these vesicles to maintain physiological and pathological processes as well as their nano-sized constituents opened doors to its applications in therapeutics, and diagnostics of variety of diseases such as cancer. Their main constituents include lipids, proteins, and RNAs. They are categorized into subtypes such as exosomes, micro-vesicles and apoptotic bodies In recent studies, extracellular vesicles that are derived from plants are gaining high regard due to their variety of advantages such as safety, non-toxicity, and high availability which promotes large scale production. EVs are isolated from mammalian and plant cells using multitude of techniques such as Ultracentrifugation, SEC, Precipitation and so on. Due to the variety in the sources as well as shortcomings arising from the isolation method, a scalable and inexpensive EV isolation method is yet to be designed. This study focusses on isolation of EVs from citrus lemon juice through diafiltration. Lemon is a promising source due to its biological properties to act as antioxidant, anticancer, and anti-inflammatory agents. Lemon derived vesicles was proven to have several proteins analogous to mammalian vesicles. A diafiltration could be carried out for successful removal of impurities and it is a scalable, continuous technique with potentially lower process times. The concentration of purified product and impurities are analysed using Size Exclusion Chromatography in analytical mode. It is also considered imperative to compare the results from diafiltration with gold standard UC. BCA is proposed to evaluate total protein content and DLS for size measurements. Finally, the ideal mode of storage of EVs to protect its internals and its structure is analysed with storage tests.
Resumo:
La malattia COVID-19 associata alla sindrome respiratoria acuta grave da coronavirus 2 (SARS-CoV-2) ha rappresentato una grave minaccia per la salute pubblica e l’economia globale sin dalla sua scoperta in Cina, nel dicembre del 2019. Gli studiosi hanno effettuato numerosi studi ed in particolar modo l’applicazione di modelli epidemiologici costruiti a partire dai dati raccolti, ha permesso la previsione di diversi scenari sullo sviluppo della malattia, nel breve-medio termine. Gli obiettivi di questa tesi ruotano attorno a tre aspetti: i dati disponibili sulla malattia COVID-19, i modelli matematici compartimentali, con particolare riguardo al modello SEIJDHR che include le vaccinazioni, e l’utilizzo di reti neurali ”physics-informed” (PINNs), un nuovo approccio basato sul deep learning che mette insieme i primi due aspetti. I tre aspetti sono stati dapprima approfonditi singolarmente nei primi tre capitoli di questo lavoro e si sono poi applicate le PINNs al modello SEIJDHR. Infine, nel quarto capitolo vengono riportati frammenti rilevanti dei codici Python utilizzati e i risultati numerici ottenuti. In particolare vengono mostrati i grafici sulle previsioni nel breve-medio termine, ottenuti dando in input dati sul numero di positivi, ospedalizzati e deceduti giornalieri prima riguardanti la città di New York e poi l’Italia. Inoltre, nell’indagine della parte predittiva riguardante i dati italiani, si è individuato un punto critico legato alla funzione che modella la percentuale di ricoveri; sono stati quindi eseguiti numerosi esperimenti per il controllo di tali previsioni.
Resumo:
Nonostante lo scetticismo di molti studiosi circa la possibilità di prevedere l'andamento della borsa valori, esistono svariate teorie ipotizzanti la possibilità di utilizzare le informazioni conosciute per predirne i movimenti futuri. L’avvento dell’intelligenza artificiale nella seconda parte dello scorso secolo ha permesso di ottenere risultati rivoluzionari in svariati ambiti, tanto che oggi tale disciplina trova ampio impiego nella nostra vita quotidiana in molteplici forme. In particolare, grazie al machine learning, è stato possibile sviluppare sistemi intelligenti che apprendono grazie ai dati, riuscendo a modellare problemi complessi. Visto il successo di questi sistemi, essi sono stati applicati anche all’arduo compito di predire la borsa valori, dapprima utilizzando i dati storici finanziari della borsa come fonte di conoscenza, e poi, con la messa a punto di tecniche di elaborazione del linguaggio naturale umano (NLP), anche utilizzando dati in linguaggio naturale, come il testo di notizie finanziarie o l’opinione degli investitori. Questo elaborato ha l’obiettivo di fornire una panoramica sull’utilizzo delle tecniche di machine learning nel campo della predizione del mercato azionario, partendo dalle tecniche più elementari per arrivare ai complessi modelli neurali che oggi rappresentano lo stato dell’arte. Vengono inoltre formalizzati il funzionamento e le tecniche che si utilizzano per addestrare e valutare i modelli di machine learning, per poi effettuare un esperimento in cui a partire da dati finanziari e soprattutto testuali si tenterà di predire correttamente la variazione del valore dell’indice di borsa S&P 500 utilizzando un language model basato su una rete neurale.
Resumo:
This thesis describes a study conducted for the development of a new approach for the design of compliant mechanisms. Currently compliant mechanisms are based on a 2.5D design method. The applications for which compliant mechanisms can be used this way, is limited. The proposed research suggests to use a 3D approach for the design of CM’s, to better exploit its useful properties. To test the viability of this method, a practical application was chosen. The selected application is related to morphing wings. During this project a working prototype of a variable sweep and variable AoA system was designed and made for an SUAV. A compliant hinge allows the system to achieve two DOF. This hinge has been designed using the proposed 3D design approach. To validate the capabilities of the design, two methods were used. One of these methods was by simulation. By using analysis software, a basic idea could be provided of the stress and deformation of the designed mechanism. The second validation was done by means of AM. Using FDM and material jetting technologies, several prototypes were manufactured. The result of the first model showed that the DOF could be achieved. Models manufactured using material jetting technology, proved that the designed model could provide the desired motion and exploit the positive characteristics of CM. The system could be manufactured successfully in one part. Being able to produce the system in one part makes the need for an extensive assembly process redundant. This improves its structural quality. The materials chosen for the prototypes were PLA, VeroGray and Rigur. The material properties were suboptimal for its final purpose, but successful results were obtained. The prototypes proved tough and were able to provide the desired motion. This proves that the proposed design method can be a useful tool for the design of improved CM’s. Furthermore, the variable sweep & AoA system could be used to boost the flight performance of SUAV’s.
Resumo:
The current climate crisis requires a comprehensive understanding of biodiversity to acknowledge how ecosystems’ responses to anthropogenic disturbances may result in feedback that can either mitigate or exacerbate global warming. Although ecosystems are dynamic and macroecological patterns change drastically in response to disturbance, dynamic macroecology has received insufficient attention and theoretical formalisation. In this context, the maximum entropy principle (MaxEnt) could provide an effective inference procedure to study ecosystems. Since the improper usage of entropy outside its scope often leads to misconceptions, the opening chapter will clarify its meaning by following its evolution from classical thermodynamics to information theory. The second chapter introduces the study of ecosystems from a physicist’s viewpoint. In particular, the MaxEnt Theory of Ecology (METE) will be the cornerstone of the discussion. METE predicts the shapes of macroecological metrics in relatively static ecosystems using constraints imposed by static state variables. However, in disturbed ecosystems with macroscale state variables that change rapidly over time, its predictions tend to fail. In the final chapter, DynaMETE is therefore presented as an extension of METE from static to dynamic. By predicting how macroecological patterns are likely to change in response to perturbations, DynaMETE can contribute to a better understanding of disturbed ecosystems’ fate and the improvement of conservation and management of carbon sinks, like forests. Targeted strategies in ecosystem management are now indispensable to enhance the interdependence of human well-being and the health of ecosystems, thus avoiding climate change tipping points.