72 resultados para Cromatografía del gas
Resumo:
I rifiuti rappresentano un’opportunità di crescita sostenibile in termini di riduzione del consumo di risorse naturali e di sviluppo di tecnologie per il riciclo di materia ed il recupero energetico. Questo progetto di ricerca si occupa di valutare, attraverso l’approccio dello studio del ciclo di vita, la valorizzazione energetica di una particolare categoria di rifiuti: i fanghi derivanti dalla depurazione delle acque. Si è studiata la valorizzazione dei fanghi attraverso l’applicazione del Thermo Catalytic Re-forming (TCR)®, tecnologia che consente di trasformare i fanghi in un carburante per la produzione di energia elettrica (bioliquido). Le valutazioni sono effettuate per una linea di processo generale e due configurazioni progettuali declinate in due scenari. Il caso di studio è stato riferito al depuratore di S. Giustina (Rimini). Per la linea di processo, per ognuna delle configurazioni e i relativi scenari, è stato compilato il bilancio energetico e di massa e, conseguentemente, valutata l’efficienza energetica del processo. Le regole della Renewable Energy Directive (RED), applicate attraverso lo strumento ‘BioGrace I’, permettono di definire il risparmio di gas serra imputabile al bioliquido prodotto. I risultati mostrano che adottare la tecnologia TRC® risulta essere energeticamente conveniente. Infatti, è possibile ricavare dal 77 al 111% del fabbisogno energetico di una linea di processo generale (linea fanghi convenzionale e recupero energetico TCR®). Questo permette, quindi, di ricavare energia utile al processo di depurazione. La massima performance si realizza quando la tecnologia si trova a valle di una linea di trattamento fanghi priva di digestione anaerobica e se il biochar prodotto viene utilizzato come combustibile solido sostitutivo del carbone. La riduzione delle emissioni imputabile al bioliquido prodotto va dal 53 al 75%, valori che soddisfano il limite definito dalla RED del 50% di riduzione delle emissioni (2017) per ogni configurazione progettuale valutata.
Resumo:
Il presente lavoro di tesi vuole focalizzare l’attenzione sull’impiego del GNL per la propulsione navale, analizzando aspetti legati alla sicurezza delle infrastrutture necessarie a tale scopo. Si sono considerati due diversi casi di studio: il primo riguarda un deposito costiero attrezzato per poter svolgere attività di rifornimento per imbarcazioni, mentre il secondo caso interessa una nave da trasporto passeggeri alimentata a GNL. È stata condotta un’analisi del rischio: l’identificazione dei pericoli ha seguito le linee guida proposte dalla metodologia MIMAH, oltre a sfruttare risultati di analisi HAZOP e HAZID. La stima delle frequenze di rilascio è stata effettuata con la tecnica della parts count, sulla base di valori ottenuti da database affidabilistici. La valutazione delle conseguenze è stata realizzata con il supporto del software DNV PHAST, utilizzando come riferimento i valori soglia proposti dal D.M. 9/5/2001. È stata infine impostata una modellazione fluidodinamica con lo scopo di valutare la possibilità di rottura catastrofica dei serbatoi di stoccaggio dovuta ad un’eccessiva pressurizzazione causata da una situazione di incendio esterno. Le simulazioni sono state condotte con il supporto del software CFD ANSYS® FLUENT® 17.2. Si è modellata una situazione di completo avvolgimento dalle fiamme considerando due geometrie di serbatoio diverse, nel caso di materiale isolante integro o danneggiato. I risultati ottenuti dall’analisi del rischio mostrano come i danni derivanti da un ipotetico scenario incidentale possano avere conseguenze anche significative, ma con valori di frequenze di accadimento tipici di situazioni rare. Lo studio fluidodinamico del comportamento di serbatoi di stoccaggio avvolti dalle fiamme ha evidenziato come questi siano capaci di resistere a condizioni gravose di incendio per tempi prolungati senza che si abbia una pressurizzazione tale da destare preoccupazione per l’integrità strutturale delle apparecchiature.
Resumo:
Il pirofosfato di vanadile VPP è il catalizzatore utilizzato per l’ossidazione di n-butano ad anidride maleica AM. Durante reazione, il VPP subisce delle modifiche strutturali, soprattutto nella parte superficiale, cataliticamente attiva. Queste modifiche sono funzione della composizione della fase gas e delle caratteristiche del catalizzatore, in particolare del rapporto P/V. Mediante prove di reattività in condizioni stazionarie e non-stazionarie, condotte in cella ambientale accoppiata ad uno spettrofotometro Raman, si è arrivati a capire quali fasi e in che condizioni queste si sviluppano sulla superficie del VPP. Si è inoltre capito che la fase selettiva nel prodotto desiderato, AM, è costituita da δ-VOPO4. Non è ancora noto con esattezza perché questo composto offra le prestazioni migliori; si ipotizza che ciò sia dovuto alla capacità di dare luogo a cicli redox tra V5+ e V4+ con cinetiche veloci, grazie al fatto che ha similarità strutturali con il VPP. La formazione di questa fase avviene più facilmente in presenza di un eccesso di P. Oltre al P, un altro fattore che influisce sulle prestazioni catalitiche è la presenza di elementi promotori. Tra questi, il Nb è uno dei più importanti, come dimostato dalle prove di reattività condotte in miscela butano-aria, utilizzando catalizzatori promossi con diversi quantitativi di Nb. In questo modo si è capito che alle basse temperature occorre un catalizzatore con una maggiore quantità di Nb (per esempio, rapporto V/Nb=46) per favorire la formazione della fase δ-VOPO4; mentre alle alte temperature, sono sufficienti piccole quantità di elemento promotore, in quanto indipendentemente dal rapporto P/V la fase predominante è δ-VOPO4. Una quantità elevata di Nb ha implicazioni negative sulla selettività, sia alle alte che alle basse temperature di reazione, perché favorisce la formazione di una superficie catalitica troppo ossidata. L’obiettivo del mio lavoro di tesi è stato quello di dimostrare una correlazione tra l’effetto del Nb e la formazione della fase δ-VOPO4. Per farlo, si è deciso di partire da VOPO4•2H2O (VPD) promosso con diversi quantitativi di Nb. Infatti, com’era già stato dimostrato in precedenza, il VPD che si forma in ambiente di reazione per ossidazione superficiale del VPP dà luogo a disidratazione a δ-VOPO4. Le trasformazioni del VPD promosso con Nb sono state monitorate utilizzando la spettroscopia Raman. Le prove condotte hanno confermato che l’addizione di Nb al VPP favorisce la formazione del composto desiderato; tuttavia, la medesima trasformazione non è stata osservata partendo dal composto VPD contenente Nb.
Resumo:
Al giorno d’oggi i combustibili fossili come carbone, olio e gas naturale forniscono più del 75% dell’energia mondiale. Tuttavia, la crescente richiesta di queste fonti di energia non rinnovabili, si manifesta in un momento in cui le riserve naturali si stanno esaurendo; è stato infatti stimato che le riserve petrolifere di tutto il mondo possano essere sufficienti per fornire energia e produrre prodotti chimici per i prossimi quarant’anni. Per questo motivo la conversione delle biomasse per produrre energia e prodotti chimici sta diventando una valida alternativa per diversificare le fonti energetiche e ridurre il surriscaldamento globale. Le biomasse, infatti, oltre ad essere una fonte rinnovabile, generano minori emissioni di gas serra rispetto ai combustibili fossili, perché la CO2 rilasciata nei processi di utilizzo viene bilanciata da quella consumata nel processo di crescita delle biomasse stesse. Lo sfruttamento delle biomasse per la produzione di building blocks per la chimica suscita particolare interesse, poiché le molecole ottenute sono già parzialmente funzionalizzate; ciò significa che la sintesi di prodotti chimici specifici richiede un minor numero di stadi rispetto ai building blocks petroliferi, con conseguente diminuzione di prodotti di scarto e sottoprodotti. Un esempio di queste potenziali “molecole piattaforma” è il 5-idrossimetilfurfurale (HMF), un importante composto derivato dalla disidratazione di zuccheri, intermedio chiave per la sintesi di un’ampia varietà di prodotti chimici e combustibili alternativi, tra cui l’acido 2,5- furandicarbossilico (FDCA), che è stato identificato tra i dodici composti chimici più importanti degli ultimi anni. Per esempio, il FDCA è un possibile sostituto dell’acido tereftalico, usato per produrre il polietilentereftalato (PET). Recentemente alcuni autori hanno riportato interessanti risultati sull’ossidazione dell’HMF a FDCA utilizzando catalizzatori a base di Au supportato. Questi catalizzatori mostrano però significativi problemi di disattivazione. Lo scopo di questo lavoro di tesi è stato quindi lo sviluppo di catalizzatori attivi e stabili nella reazione di ossidazione dell’HMF a FDCA. Il lavoro portato avanti ha avuto come obbiettivi principali: l’ottimizzazione della sintesi di nanoparticelle di oro e oro/rame a diverso rapporto molare, mediante un processo di sintesi, in acqua, a basso impatto ambientale. Tale metodo di sintesi si basa sull’azione riducente del sistema glucosio-NaOH ed è stato messo a punto in lavori di tesi precedenti. Le nanoparticelle sintetizzate sono state utilizzate, quali fase attiva, per la preparazione di catalizzatori supportati su TiO2 e CeO2 lo studio dell’attività catalitica e riusabilità dei catalizzatori preparati nell’ossidazione in fase liquida del HMF a FDCA.
Resumo:
L’idrogeno è un elemento di elevato interesse economico, con una produzione industriale che supera i 55 x 1010 m3/anno e notevoli prospettive di sviluppo delle sue applicazioni. Attualmente l’idrogeno è prodotto principalmente in impianti di larga scala (circa 1000 m3/h) da combustibili fossili attraverso processi di steam reforming ed ossidazione parziale catalitica. Per aumentare la produzione di idrogeno un ruolo fondamentale è svolto dalla reazione di water gas shift (WGS) che abbatte il contenuto di CO, massimizzando la produzione di idrogeno. La reazione è condotta industrialmente in due stadi, operanti ad alta temperatura (HTS, circa 350 °C) e bassa temperatura (LTS, circa 250 °C), utilizzando rispettivamente catalizzatori a base di ferro o rame. Tuttavia, è evidente l’interesse per nuove formulazioni in grado di operare in un unico stadio a temperatura intermedia (MTS), mantenendo le caratteristiche ottimali di attività e stabilità. In questo lavoro di tesi, condotto in collaborazione con AIR LIQUIDE (F), è stato affrontato uno studio della reazione di WGS finalizzato allo sviluppo di nuove formulazioni attive e stabili nell’MTS. In particolare, sono stati sintetizzati precursori idrotalcitici Cu/Zn/Al (contenenti carbonati o silicati), con bassi contenuti di rame (diversamente da quanto riportato in letteratura), modulandone le proprietà chimico-fisiche, l’attività catalitica e la stabilità con il tempo di reazione. Si è osservato come i catalizzatori con minori contenuti di rame ed ottenuti da precursori contenenti carbonati mostrassero un’elevata attività e selettività nell’MTS, raggiungendo valori di conversione del CO analoghi a quelli all’equilibrio termodinamico già a 300 °C, indipendentemente dai valori del rapporto S/DG e del tempo di contatto. Tutti i catalizzatori mostrano un’elevata stabilità con il tempo di reazione, con incrementi del quantitativo del CO in uscita dopo 100h di circa lo 0,7 % v/v. I catalizzatori scaricati dopo le prove catalitiche evidenziano gli effetti dei processi di sinterizzazione (diminuzione dell’area superficiale ed incremento delle dimensioni dei cristalliti), la cui entità diminuisce al diminuire del contenuto di rame. Infine, confrontando l’attività dei migliori catalizzatori preparati in questo lavoro di tesi con quella di uno dei più utilizzati catalizzatori commerciali per la reazione di WGS a bassa temperatura, si sono osservati valori di attività analoghi, raggiungendo quelli di equilibrio per temperature 300°C, ma con una attività significativamente superiore nelle condizioni LTS, soprattutto considerando il valore del tempo di contatto inferiore a quelli comunemente utilizzati negli impianti industriali.
Resumo:
Nonostante negli ultimi anni si sia verificato un generale abbassamento degli infortuni sul lavoro, si rileva che gli incidenti legati alle esplosioni sono rimasti pressoché stazionari. Questo indica la necessità, sia di una maggiore aderenza delle soluzioni di limitazione dei rischi adottate, alle direttive nazionali ed europee pur introdotte in campo legislativo, sia – soprattutto – di asseverare processi di valutazione dei rischi medesimi, caso per caso presentati dalle differenti realtà produttive. Nel lavoro qui presentato si è proceduto, quindi, dopo un'introduzione sulle dinamiche dei fenomeni fisico-chimici che portano all’esplosione, a proporre ed illustrare una metodologia di analisi ed adeguamento alle principali normative in materia di ATEX, ovvero alle Direttive europee di riferimento e alle norme tecniche CEI specialistiche mediante un approccio classico di analisi del rischio. Fine ultimo di tale metodologia sarà la definizione del livello di riduzione del rischio ottenuto grazie all’adeguamento alle predette Direttive. Preliminarmente viene definita una procedura di ottimizzazione per l’individuazione e classificazione le sorgenti di emissione, sia di gas e vapori, che di polveri. Analogo ragionamento viene, poi, condotto per le principali fonti d’innesco delle nubi. Utilizzando opportuni software nel continuo si definisce il livello di rischio pre-adeguamento, le aree di maggiore criticità (in cui procedere agli interventi di prevenzione e protezione, materiali e organizzativi) e il livello di rischio residuo post-adeguamento. La metodologia è stata applicata al caso reale di un impianto per la distillazione dell’etanolo.
Resumo:
Diversi studi presenti in letteratura hanno messo in evidenza come il sistema di filtrazione di un olio extravergine di oliva rivesta un ruolo importante per una corretta conservazione del prodotto nel tempo; contestualmente, l’applicazione di metodi tradizionali di trattamento comporta la diminuzione di alcuni componenti minori: oltre all’allontanamento dei composti in sospensione, che concorrono a fornire l’aspetto torbido all’olio non trattato, viene allontanata acqua micro dispersa, che ha l’importante compito di solubilizzare molecole dotate di una certa polarità, principalmente fenoliche che, come noto, risultano indispensabili per la stabilità ossidativa e giocano un ruolo chiave nell’impartire all’olio extravergine di oliva alcune note sensoriali peculiari, quali l’amaro ed il piccante, percepibili in fase gustativa. Lo scopo di questo progetto sperimentale è stato di valutare la qualità chimica e sensoriale di tre oli extra vergini di oliva sottoposti ad un sistema brevettato di illimpidimento, basato sul passaggio di un flusso di gas inerte, quale l’argon, nella massa di olio d'oliva. Questo metodo può rappresentare una valida alternativa ai trattamenti tradizionali e per questo è indispensabile valutarne i punti di forza e di debolezza in relazione all’effettiva possibilità di impiego nella produzione industriale. Per questa finalità, il sistema brevettato dall'Università di Bologna e dalla Sapio (una società privata che fornisce il gas per i settori industriali e della ricerca) è stato applicato a un lotto di 50 L di ciascun olio dopo la sua produzione mediante mini-frantoio. I campioni, sia trattati che controllo, sono stati imbottigliati e conservati a temperatura ambiente e mantenuti al buio prima dell'analisi. Dopo quattro mesi di conservazione, sono stati valutati gli indici di qualità di base, tra cui acidità libera, numero di perossidi, assorbimento specifico nella zona dei dieni e trieni coniugati e il profilo sensoriale. Inoltre è stata valutata la stabilità ossidativa in condizioni forzate, il profilo dei composti maggioritari (acidi grassi) e dei composti minori (tocoferoli, fenoli, volatili, acqua). I risultati sono stati utilizzati per la comparazione della qualità complessiva degli oli extravergini di oliva sottoposti a chiarifica con sistema brevettato rispetto a quelli non trattati, permettendo una valutazione dell’effetto del nuovo sistema sulle caratteristiche chimiche e sensoriali del prodotto.
Resumo:
Il cemento è il materiale da edilizia più comune al mondo e le problematiche ambientali associate all’utilizzo ed al ciclo produttivo sono numerose (rilascio di gas serra, scelta delle materie prime, risparmio energetico) e fortemente impattanti. Tuttavia, nonostante la sua diffusione sia globale e le proprietà siano note da millenni vi sono ancora alcuni processi che non sono stati correttamente spiegati. In particolare non esiste una teoria unica e consolidata che descriva efficacemente la microstruttura delle fasi minerali del cemento che si sviluppano successivamente all'idratazione, e come esso di conseguenza interagisca con principi attivi, organici o inorganici, di cui è noto l’effetto accelerante sulla cinetica di indurimento. Questa tesi si pone l'obiettivo di condurre uno studio dell'idratazione del clinker finemente macinato (CFM - principale componente di molti cementi) focalizzato sull’interazione tra elementi chimici presenti nella matrice cementizia (Calcio, Ferro e Alluminio) ed additivi acceleranti (Trietanolammina, Triisopropanolammina). Il fenomeno è stato studiato tramite osservazione dell'andamento del rilascio dei suddetti ioni su cementi in via di idratazione e tramite utilizzo di tecniche di microscopia elettronica e di diffrazione di raggi X. L'analisi del rilascio di ioni, effettuata mediante spettroscopia ad assorbimento atomico, è stata condotta al fine di approfondire l'azione di trietanolammina e triisopropanolammina sulle dinamiche di idratazione dei CFM nelle fasi precoci di idratazione, al fine di confrontare queste dinamiche con processi che avvengono in fasi successive e che coinvolgono la formazione delle principali fasi amorfe e cristalline responsabili delle proprietà del materiale. Da indagini di diffrattometria e microscopia sono inoltre state estrapolate interessanti considerazioni circa le cinetiche che portano alla formazione delle fasi cristalline tipiche dell'idratazione del cemento (portlandite, ettringite) in presenza e assenza di additivi. Nel corso dello studio sono stati sintetizzati alcuni composti alternativi agli additivi commerciali, sviluppati a partire da building blocks provenienti da fonti rinnovabili, portando quindi l'attenzione sulla sostenibilità del processo di progettazione delle molecole, anche alla luce della degradazione in ambiente delle sostanze sintetizzate. Tali molecole sono attualmente in fase di test presso i laboratori di Italcementi (ITC Group).
Resumo:
Al giorno d’oggi, la produzione di energia e di molecole di base per l’industria chimica è completamente dipendente da risorse non rinnovabili come petrolio, carbone e gas naturale ; con tali risorse in via di esaurimento e la sempre crescente domanda di energia e materiali da parte di tutte le economie, risulta obbligatorio sviluppare tecniche per la loro produzione da risorse rinnovabili. Le biomasse, oltre ad essere una fonte rinnovabile, generano minori emissioni di gas serra rispetto ai combustibili fossili, perché la CO2 rilasciata nei processi di utilizzo viene bilanciata da quella consumata nel processo di crescita delle biomasse stesse. Tuttavia, ad oggi, lo sfruttamento di queste fonti risulta ancora sfavorito economicamente a causa di processi industriali non ancora ottimizzati, i cui costi si ripercuotono sul prodotto finale. Le molecole derivanti dagli scarti lignocellulosici possono essere usate come molecole di partenza per industrie chimiche di qualsiasi tipo, da quelle farmaceutiche a quelle plastiche. Queste molecole sono già parzialmente funzionalizzate; ciò significa che la sintesi di prodotti chimici specifici richiede un minor numero di stadi rispetto ai building blocks petroliferi, con conseguente diminuzione di prodotti di scarto e sottoprodotti . Una delle molecole “piattaforma” identificate tra le più importanti per la produzione di diversi prodotti chimici, risulta essere il 5-idrossimetilfurfurale (HMF) , derivante dalla disidratazione di polisaccaridi esosi, da cui si può ottenere tramite ossidazione selettiva, l’acido 2,5-furandicarbossilico (FDCA), potenziale sostituto dell’acido tereftalico nella produzione del PET e molti altri prodotti. Lo scopo di questo lavoro di tesi è stato lo studio della reattività di catalizzatori a base di Pd e Au/Pd utilizzati nella reazione di ossidazione dell’HMF a FDCA. Il lavoro svolto ha avuto come obiettivi principali: • L’ottimizzazione della sintesi di nanoparticelle di Pd e Au/Pd a diverso rapporto molare, e la caratterizzazione delle sospensioni ottenute mediante analisi DLS, XRD e TEM. • La preparazione di catalizzatori supportati su TiO2 e la caratterizzazione dei catalizzatori ottenuti tramite analisi BET, TEM e analisi termiche TGA/DSC. • Lo studio dell’attività catalitica dei catalizzatori preparati nell’ossidazione selettiva in fase liquida del 5-idrossimetilfurfurale (HMF) ad acido 2,5-furandicarbossilico (FDCA) e del meccanismo di reazione.
Resumo:
Negli ultimi anni l’interesse nei confronti dell’H2 è cresciuto notevolmente per l’aumento della richiesta energetica mondiale. Uno dei processi più importanti per la produzione di H2 utilizza la reazione di Water-Gas Shift (WGS) per il trattamento delle correnti in uscita dai processi di steam reforming o di ossidazione parziale catalitica. CO + H2O CO2 + H2 ∆H0298 = -41,2 KJ/mol Sono quindi stati sviluppati sistemi catalitici attivi nella reazione di WGS a media temperatura (circa 300 °C). Partendo da sistemi catalitici a base di Cu/Zn/Al, ottenuti da precursori idrotalcitici e sviluppati in lavori di tesi precedenti, sono state effettuate modifiche nella composizione al fine di aumentarne l’attività e la stabilità. L’aggiunta di piccole quantità di Mg ha un effetto positivo sull’attività dei sistemi catalitici, con effetti più evidenti a 250 °C. Tuttavia, l’aumento del contenuto di Mg, sebbene migliori le proprietà fisiche del catalizzatore (area superficiale e dispersione del Cu) sia del campione calcinato che di quello scaricato dopo reazione, peggiora drasticamente l’attività catalitica. L’aggiunta di piccole quantità di Mg sembra portare alla stabilizzazione della specie attiva Cu+ e promuovere un meccanismo redox superficiale (Cu0 e Cu+). E’ possibile correlare la conversione del CO con il rapporto ZnO/Cu, confermando il ruolo nella reazione di WGS dell’interazione Cu0/ZnO libero. La sostituzione di Mg con Ba comporta un miglioramento delle prestazioni catalitiche, in particolare nelle condizioni MTS (300 °C), suggerendo una più facile dissociazione dell’acqua legata alla stabilizzazione degli ossidrili da parte dei siti basici. È però accompagnato da una diminuzione della stabilità nelle condizioni di reazione. L’aggiunta di piccole quantità di La, Ce o Zr (con un rapporto Al/R = 50 mol/mol) incrementa la stabilità termica, sia in termini di proprietà fisiche che di attività catalitica. A seguito dei cicli termici di invecchiamento accelerato, infatti, non si riscontrano importanti diminuzioni di attività catalitica, evidenziando un’elevata stabilità della fase attiva.
Resumo:
Il lavoro è costituito da una prima parte nella quale sono analizzate in dettaglio le caratteristiche fisiche e tecnologiche degli impianti a vapore, a gas e combinati. Segue quindi una seconda parte nella quale è introdotto l'ambiente di programmazione Matlab, sono spiegate alcune funzionalità del programma e infine vengono analizzate alcune toolboxes rilevanti per la parte conclusiva del lavoro, che riguarda l'analisi numerica dei cicli sopra menzionati volta all'ottenimento di interfacce user-friendly che consentono l'approccio analitico completo a questo tipo di sistemi anche da parte di utenti inesperti di programmazione.
Resumo:
In questa tesi proponiamo una rivisitazione del classico criterio di Jeans per l'instabilità gravitazionale di una nube di gas autogravitante, tenendo conto anche degli effetti viscosi e della presenza di una forza di Coriolis. Si dimostra che l'aggiunta di tali presenze, pur non alterando la soglia critica di Jeans, è generalmente stabilizzante. Infine si evidenzia un'interessante analogia, per modellamento matematico, tecniche e terminologie, fra il collasso gravitazionale e quello chemiotattico
Resumo:
Questo lavoro di tesi ha avuto come obiettivo la preparazione di catalizzatori attivi nella reazione di ossidazione parziale catalitica, CPO, del metano per produrre gas di sintesi. I catalizzatori sono stati preparati tramite sintesi elettrochimica di composti di tipo idrotalcite a base di Rh/Mg/Al utilizzando come supporto schiume metalliche costituite da FeCrAlY. L’impiego di questo tipo di supporto comporta una serie di vantaggi, dallo sviluppo del catalizzatore all’ottimizzazione del processo catalitico in termini di prestazioni catalitiche, diminuzione degli “hot spots” termici, diminuzione delle perdite di carico e costi del catalizzatore. La sintesi del catalizzatore è stata effettuata per mezzo di una cella elettrochimica innovativa, che lavora in flusso, e quindi permette la continua rigenerazione della soluzione di sintesi, a differenza di quanto avviene in una cella elettrochimica standard a singolo comparto. La precipitazione dei composti di tipo idrotalcite si ottiene grazie alla tecnica di elettrogenerazione di basi, ovvero grazie alla generazione di un pH basico all’interno della cella elettrochimica a seguito dell’applicazione di un potenziale catodico. Il pH generato è il parametro più importante e determina la natura e la qualità del materiale depositato. È sorta quindi la necessità di sviluppare un sensore potenziometrico miniaturizzato per la determinazione istantanea del pH durante la sintesi, da installare all’interno della schiuma stessa. È possibile correlare le prestazioni catalitiche dei catalizzatori sintetizzati con la cella elettrochimica in flusso, alle loro caratteristiche di morfologia superficiale ed alla composizione chimica, e confrontare le stesse prestazioni catalitiche con quelle ottenute sintetizzando i catalizzatori con la cella elettrochimica standard a singolo comparto.
Resumo:
A causa delle questioni economiche ed ambientali legate alla sostenibilità dei processi petrolchimici, recentemente l'industria chimica ha focalizzato il proprio interesse nello sviluppo di processi per la produzione di chemicals, che utilizzino materiali di partenza rinnovabili. L'etanolo, prodotto per via fermentativa, sembra essere uno dei bio-building block più promettenti e versatili e può essere utilizzato per numerose applicazioni. È noto da tempo che l’etanolo può reagire su catalizzatori costituiti da ossidi misti con caratteristiche acido-base a dare numerosi composti chimici tra cui acetaldeide, 1,3-butadiene, 1-butanolo e 2-butenale. Nonostante il lungo impiego dell’etanolo nell’industria chimica, il meccanismo di formazione di composti C4 a partire da etanolo è ancora però materia di dibattito. Il meccanismo generalmente accettato si basa sulle seguenti reazioni chiave: deidrogenazione di etanolo ad acetaldeide e condensazione aldolica di due molecole di acetaldeide. Tuttavia in letteratura sono riportate anche altre proposte alternative. In questo lavoro è stato studiato il processo di trasformazione di etanolo su catalizzatori a base di MgO e sistemi misti Mg/SiO, attraverso esperimenti di reattività condotti in un micro-impianto da laboratorio, al fine di fare chiarezza sul meccanismo di formazione di composti C4 a partire da etanolo. In particolare è stato condotto uno studio meccanicistico utilizzando MgO come catalizzatore modello, materiale che possiede esclusivamente proprietà basiche, ritenute essenziali per catalizzare la condensazione di molecole C2. Inoltre, è stata investigata l’influenza delle caratteristiche acido-base del catalizzatore sulla selettività del processo di conversione di etanolo, studiandone la reattività su materiali costituiti da ossidi misti Mg/Si/O, con diverso rapporto atomico tra i due cationi.
Resumo:
Lo scopo della seguente tesi è quello di illustrare la disposizione dei campioni di sistemi binari Mg Pd e di deposizioni singole di Ti, nell’abito di due progetti di ricerca, l’SSHS, Solide State Hydrogen Storage nell’ambito dell’Azione COST, e la produzione di titania (TiO2) per la fotocatalisi, sintetizzati in differenti reggimi di flusso di gas d’He, realizzando la crescita con il metodo IGC. Sono state illustrate le nuove proprietà e i metodi di formazione dei materiali nanostrutturati, per poi passare alla descrizione dell’apparato dove sono stati prodotti i campioni, con la conseguente spiegazione della progettazione del controllore di flusso dei sistemi di alimentazione e interfacciamento di quest’ultimo. Dopo un’accurata analisi al microscopio elettronico, `e stata descritta la morfologia dei campioni a due diversi reggimi di flusso di gas He, per i campioni di Mg Pd non sono state apprezzate differenze al variare del flusso, per il Ti, invece, si può notare una variazione morfologica legata alle dimensioni.