52 resultados para Computer Vision Android


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Collecting and analysing data is an important element in any field of human activity and research. Even in sports, collecting and analyzing statistical data is attracting a growing interest. Some exemplar use cases are: improvement of technical/tactical aspects for team coaches, definition of game strategies based on the opposite team play or evaluation of the performance of players. Other advantages are related to taking more precise and impartial judgment in referee decisions: a wrong decision can change the outcomes of important matches. Finally, it can be useful to provide better representations and graphic effects that make the game more engaging for the audience during the match. Nowadays it is possible to delegate this type of task to automatic software systems that can use cameras or even hardware sensors to collect images or data and process them. One of the most efficient methods to collect data is to process the video images of the sporting event through mixed techniques concerning machine learning applied to computer vision. As in other domains in which computer vision can be applied, the main tasks in sports are related to object detection, player tracking, and to the pose estimation of athletes. The goal of the present thesis is to apply different models of CNNs to analyze volleyball matches. Starting from video frames of a volleyball match, we reproduce a bird's eye view of the playing court where all the players are projected, reporting also for each player the type of action she/he is performing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The inferior alveolar nerve (IAN) lies within the mandibular canal, named inferior alveolar canal in literature. The detection of this nerve is important during maxillofacial surgeries or for creating dental implants. The poor quality of cone-beam computed tomography (CBCT) and computed tomography (CT) scans and/or bone gaps within the mandible increase the difficulty of this task, posing a challenge to human experts who are going to manually detect it and resulting in a time-consuming task.Therefore this thesis investigates two methods to automatically detect the IAN: a non-data driven technique and a deep-learning method. The latter tracks the IAN position at each frame leveraging detections obtained with the deep neural network CenterNet, fined-tuned for our task, and temporal and spatial information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il Deep Learning ha radicalmente trasformato il mondo del Machine Learning migliorando lo stato dell'arte in diversi campi che spaziano dalla computer vision al natural language processing. Non fermandosi a problemi di classificazione, negli ultimi anni, applicazioni di tipo generativo hanno portato alla creazione di immagini realistiche e documenti letterali. Il mondo della musica non è esente da una moltitudine di esperimenti nello stesso campo, con risultati ancora acerbi ma comunque potenzialmente interessanti. In questa tesi verrà discussa l'applicazione di un di modello appartenente alla famiglia del Deep Learning per la generazione di musica simbolica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Correctness of information gathered in production environments is an essential part of quality assurance processes in many industries, this task is often performed by human resources who visually take annotations in various steps of the production flow. Depending on the performed task the correlation between where exactly the information is gathered and what it represents is more than often lost in the process. The lack of labeled data places a great boundary on the application of deep neural networks aimed at object detection tasks, moreover supervised training of deep models requires a great amount of data to be available. Reaching an adequate large collection of labeled images through classic techniques of data annotations is an exhausting and costly task to perform, not always suitable for every scenario. A possible solution is to generate synthetic data that replicates the real one and use it to fine-tune a deep neural network trained on one or more source domains to a different target domain. The purpose of this thesis is to show a real case scenario where the provided data were both in great scarcity and missing the required annotations. Sequentially a possible approach is presented where synthetic data has been generated to address those issues while standing as a training base of deep neural networks for object detection, capable of working on images taken in production-like environments. Lastly, it compares performance on different types of synthetic data and convolutional neural networks used as backbones for the model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il seguente elaborato affronta l'implementazione di un algoritmo che affronta un problema di controllo di processo in ambito industriale utilizzando algoritmi di object detection. Infatti, il progetto concordato con il professore Di Stefano si è svolto in collaborazione con l’azienda Pirelli, nell’ambito della produzione di pneumatici. Lo scopo dell'algoritmo implementato è di verificare il preciso orientamento di elementi grafici della copertura, utilizzati dalle case automobilistiche per equipaggiare correttamente le vetture. In particolare, si devono individuare delle scritte sul battistrada della copertura e identificarne la posizione rispetto ad altri elementi fissati su di essa. La tesi affronta questo task in due parti distinte: la prima consiste nel training di algoritmi di deep learning per il riconoscimento degli elementi grafici e del battistrada, la seconda è un decisore che opera a valle del primo sistema utilizzando gli output delle reti allenate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nell’ambito della Stereo Vision, settore della Computer Vision, partendo da coppie di immagini RGB, si cerca di ricostruire la profondità della scena. La maggior parte degli algoritmi utilizzati per questo compito ipotizzano che tutte le superfici presenti nella scena siano lambertiane. Quando sono presenti superfici non lambertiane (riflettenti o trasparenti), gli algoritmi stereo esistenti sbagliano la predizione della profondità. Per risolvere questo problema, durante l’esperienza di tirocinio, si è realizzato un dataset contenente oggetti trasparenti e riflettenti che sono la base per l’allenamento della rete. Agli oggetti presenti nelle scene sono associate annotazioni 3D usate per allenare la rete. Invece, nel seguente lavoro di tesi, utilizzando l’algoritmo RAFT-Stereo [1], rete allo stato dell’arte per la stereo vision, si analizza come la rete modifica le sue prestazioni (predizione della disparità) se al suo interno viene inserito un modulo per la segmentazione semantica degli oggetti. Si introduce questo layer aggiuntivo perché, trovare la corrispondenza tra due punti appartenenti a superfici lambertiane, risulta essere molto complesso per una normale rete. Si vuole utilizzare l’informazione semantica per riconoscere questi tipi di superfici e così migliorarne la disparità. È stata scelta questa architettura neurale in quanto, durante l’esperienza di tirocinio riguardante la creazione del dataset Booster [2], è risultata la migliore su questo dataset. L’obiettivo ultimo di questo lavoro è vedere se il riconoscimento di superfici non lambertiane, da parte del modulo semantico, influenza la predizione della disparità migliorandola. Nell’ambito della stereo vision, gli elementi riflettenti e trasparenti risultano estremamente complessi da analizzare, ma restano tuttora oggetto di studio dati gli svariati settori di applicazione come la guida autonoma e la robotica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Application of dataset fusion techniques to an object detection task, involving the use of deep learning as convolutional neural networks, to manage to create a single RCNN architecture able to inference with good performances on two distinct datasets with different domains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gaze estimation has gained interest in recent years for being an important cue to obtain information about the internal cognitive state of humans. Regardless of whether it is the 3D gaze vector or the point of gaze (PoG), gaze estimation has been applied in various fields, such as: human robot interaction, augmented reality, medicine, aviation and automotive. In the latter field, as part of Advanced Driver-Assistance Systems (ADAS), it allows the development of cutting-edge systems capable of mitigating road accidents by monitoring driver distraction. Gaze estimation can be also used to enhance the driving experience, for instance, autonomous driving. It also can improve comfort with augmented reality components capable of being commanded by the driver's eyes. Although, several high-performance real-time inference works already exist, just a few are capable of working with only a RGB camera on computationally constrained devices, such as a microcontroller. This work aims to develop a low-cost, efficient and high-performance embedded system capable of estimating the driver's gaze using deep learning and a RGB camera. The proposed system has achieved near-SOTA performances with about 90% less memory footprint. The capabilities to generalize in unseen environments have been evaluated through a live demonstration, where high performance and near real-time inference were obtained using a webcam and a Raspberry Pi4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to estimate depth through supervised deep learning-based stereo methods, it is necessary to have access to precise ground truth depth data. While the gathering of precise labels is commonly tackled by deploying depth sensors, this is not always a viable solution. For instance, in many applications in the biomedical domain, the choice of sensors capable of sensing depth at small distances with high precision on difficult surfaces (that present non-Lambertian properties) is very limited. It is therefore necessary to find alternative techniques to gather ground truth data without having to rely on external sensors. In this thesis, two different approaches have been tested to produce supervision data for biomedical images. The first aims to obtain input stereo image pairs and disparities through simulation in a virtual environment, while the second relies on a non-learned disparity estimation algorithm in order to produce noisy disparities, which are then filtered by means of hand-crafted confidence measures to create noisy labels for a subset of pixels. Among the two, the second approach, which is referred in literature as proxy-labeling, has shown the best results and has even outperformed the non-learned disparity estimation algorithm used for supervision.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il mondo della moda è in continua e costante evoluzione, non solo dal punto di vista sociale, ma anche da quello tecnologico. Nel corso del presente elaborato si è studiata la possibilità di riconoscere e segmentare abiti presenti in una immagine utilizzando reti neurali profonde e approcci moderni. Sono state, quindi, analizzate reti quali FasterRCNN, MaskRCNN, YOLOv5, FashionPedia e Match-RCNN. In seguito si è approfondito l’addestramento delle reti neurali profonde in scenari di alta parallelizzazione e su macchine dotate di molteplici GPU al fine di ridurre i tempi di addestramento. Inoltre si è sperimentata la possibilità di creare una rete per prevedere se un determinato abito possa avere successo in futuro analizzando semplicemente dati passati e una immagine del vestito in questione. Necessaria per tali compiti è stata, inoltre, una approfondita analisi dei dataset esistenti nel mondo della moda e dei metodi per utilizzarli per l’addestramento. Il presente elaborato è stato svolto nell’ambito del progetto FA.RE.TRA. per il quale l'Università di Bologna svolge un compito di consulenza per lo studio di fattibilità su reti neurali in grado di svolgere i compiti menzionati.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Neural Networks customized and tested in this thesis (WaldoNet, FlowNet and PatchNet) are a first exploration and approach to the Template Matching task. The possibilities of extension are therefore many and some are proposed below. During my thesis, I have analyzed the functioning of the classical algorithms and adapted with deep learning algorithms. The features extracted from both the template and the query images resemble the keypoints of the SIFT algorithm. Then, instead of similarity function or keypoints matching, WaldoNet and PatchNet use the convolutional layer to compare the features, while FlowNet uses the correlational layer. In addition, I have identified the major challenges of the Template Matching task (affine/non-affine transformations, intensity changes...) and solved them with a careful design of the dataset.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Depth estimation from images has long been regarded as a preferable alternative compared to expensive and intrusive active sensors, such as LiDAR and ToF. The topic has attracted the attention of an increasingly wide audience thanks to the great amount of application domains, such as autonomous driving, robotic navigation and 3D reconstruction. Among the various techniques employed for depth estimation, stereo matching is one of the most widespread, owing to its robustness, speed and simplicity in setup. Recent developments has been aided by the abundance of annotated stereo images, which granted to deep learning the opportunity to thrive in a research area where deep networks can reach state-of-the-art sub-pixel precision in most cases. Despite the recent findings, stereo matching still begets many open challenges, two among them being finding pixel correspondences in presence of objects that exhibits a non-Lambertian behaviour and processing high-resolution images. Recently, a novel dataset named Booster, which contains high-resolution stereo pairs featuring a large collection of labeled non-Lambertian objects, has been released. The work shown that training state-of-the-art deep neural network on such data improves the generalization capabilities of these networks also in presence of non-Lambertian surfaces. Regardless being a further step to tackle the aforementioned challenge, Booster includes a rather small number of annotated images, and thus cannot satisfy the intensive training requirements of deep learning. This thesis work aims to investigate novel view synthesis techniques to augment the Booster dataset, with ultimate goal of improving stereo matching reliability in presence of high-resolution images that displays non-Lambertian surfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unmanned Aerial Vehicle (UAVs) equipped with cameras have been fast deployed to a wide range of applications, such as smart cities, agriculture or search and rescue applications. Even though UAV datasets exist, the amount of open and quality UAV datasets is limited. So far, we want to overcome this lack of high quality annotation data by developing a simulation framework for a parametric generation of synthetic data. The framework accepts input via a serializable format. The input specifies which environment preset is used, the objects to be placed in the environment along with their position and orientation as well as additional information such as object color and size. The result is an environment that is able to produce UAV typical data: RGB image from the UAVs camera, altitude, roll, pitch and yawn of the UAV. Beyond the image generation process, we improve the resulting image data photorealism by using Synthetic-To-Real transfer learning methods. Transfer learning focuses on storing knowledge gained while solving one problem and applying it to a different - although related - problem. This approach has been widely researched in other affine fields and results demonstrate it to be an interesing area to investigate. Since simulated images are easy to create and synthetic-to-real translation has shown good quality results, we are able to generate pseudo-realistic images. Furthermore, object labels are inherently given, so we are capable of extending the already existing UAV datasets with realistic quality images and high resolution meta-data. During the development of this thesis we have been able to produce a result of 68.4% on UAVid. This can be considered a new state-of-art result on this dataset.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nel TCR - Termina container Ravenna, è importante che nel momento di scarico del container sul camion non siano presenti persone nell’area. In questo elaborato si descrive la realizzazione e il funzionamento di un sistema di allarme automatico, in grado di rilevare persone ed eventualmente interrompere la procedura di scarico del container. Tale sistema si basa sulla tecnica della object segmentation tramite rimozione dello sfondo, a cui viene affiancata una classificazione e rimozione delle eventuali ombre con un metodo cromatico. Inoltre viene identificata la possibile testa di una persona e avendo a disposizione due telecamere, si mette in atto una visione binoculare per calcolarne l’altezza. Infine, viene presa in considerazione anche la dinamica del sistema, per cui la classificazione di una persona si può basare sulla grandezza, altezza e velocità dell’oggetto individuato.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il machine learning negli ultimi anni ha acquisito una crescente popolarità nell’ambito della ricerca scientifica e delle sue applicazioni. Lo scopo di questa tesi è stato quello di studiare il machine learning nei suoi aspetti generali e applicarlo a problemi di computer vision. La tesi ha affrontato le difficoltà del dover spiegare dal punto di vista teorico gli algoritmi alla base delle reti neurali convoluzionali e ha successivamente trattato due problemi concreti di riconoscimento immagini: il dataset MNIST (immagini di cifre scritte a mano) e un dataset che sarà chiamato ”MELANOMA dataset” (immagini di melanomi e nevi sani). Utilizzando le tecniche spiegate nella sezione teorica si sono riusciti ad ottenere risultati soddifacenti per entrambi i dataset ottenendo una precisione del 98% per il MNIST e del 76.8% per il MELANOMA dataset