163 resultados para parametrice equazioni integro-differenziali
Resumo:
La tesi affronta il problema della risoluzione numerica di equazioni differenziali ordinarie, in particolare di problemi ai valori iniziali. Illustra i principali metodi numerici e li confronta, implementando il codice su MATLAB. Vengono risolti modelli fisici, biologici e demografici, come l'oscillatore di Lorenz e le equazioni di Lotka-Volterra.
Resumo:
Primi elementi della teoria dei semigruppi di operatori lineari e applicazione del metodo dei semigruppi alle equazioni differenziali alle derivate parziali di tipo parabolico.
Resumo:
In questa tesi tratteremo alcune applicazioni della teoria delle distribuzioni, specialmente di quelle temperate. Nei primi capitoli introdurremo i concetti fondamentali di questa teoria e cercheremo di fornire al lettore tutti gli strumenti necessari per affrontare l’argomento principale: la ricerca delle soluzioni fondamentali per un operatore lineare a coefficienti costanti e la risoluzione di problemi differenziali per essi. Infine applicheremo quanto studiato, all’operatore delle onde. Conclude la tesi un’appendice in cui verranno trattate le distribuzioni a simmetria radiale, utili per affrontare il problema di Cauchy per l’equazione delle onde.
Resumo:
In questa tesi viene esposto il modello EU ETS (European Union Emission Trading Scheme) per la riduzione delle emissoni di gas serra, il quale viene formalizzato matematicamente da un sistema di FBSDE (Forward Backward Stochastic Differential Equation). Da questo sistema si ricava un'equazione differenziale non lineare con condizione al tempo finale non continua che viene studiata attraverso la teoria delle soluzioni viscosità. Inoltre il modello viene implementato numericamente per ottenere alcune simulazioni dei processi coinvolti.
Resumo:
In questo elaborato si presentano alcuni risultati relativi alle equazioni differenziali stocastiche (SDE) lineari. La soluzione di un'equazione differenziale stocastica lineare è un processo stocastico con distribuzione multinormale in generale degenere. Al contrario, nel caso in cui la matrice di covarianza è definita positiva, la soluzione ha densità gaussiana Γ. La Γ è inoltre la soluzione fondamentale dell'operatore di Kolmogorov associato alla SDE. Nel primo capitolo vengono presentate alcune condizioni necessarie e sufficienti che assicurano che la matrice di covarianza sia definita positiva nel caso, più semplice, in cui i coefficienti della SDE sono costanti, e nel caso in cui questi sono dipendenti dal tempo. A questo scopo gioca un ruolo fondamentale la teoria del controllo. In particolare la condizione di Kalman fornisce un criterio operativo per controllare se la matrice di covarianza è definita positiva. Nel secondo capitolo viene presentata una dimostrazione diretta della disuguaglianza di Harnack utilizzando una stima del gradiente dovuta a Li e Yau. Le disuguaglianze di Harnack sono strumenti fondamentali nella teoria delle equazioni differenziali a derivate parziali. Nel terzo capitolo viene proposto un esempio di applicazione della disuguaglianza di Harnack in finanza. In particolare si osserva che la disuguaglianza di Harnack fornisce un limite superiore a priori del valore futuro di un portafoglio autofinanziante in funzione del capitale iniziale.
Resumo:
L'elaborato è finalizzato a presentare l'analisi degli operatori differenziali agenti in meccanica quantistica e la teoria degli operatori di Sturm-Liouville. Nel primo capitolo vengono analizzati gli operatori differenziali e le relative proprietà. Viene studiata la loro autoaggiunzione su vari domini con diverse condizioni al contorno e vengono tratte delle conclusioni sul loro significato come osservabili. Nel secondo capitolo viene presentato il concetto di spettro e vengono studiate le sue proprietà.Vengono poi analizzati gli spettri degli operatori precedentemente introdotti. Nell'utimo capitolo vengono presentati gli operatori di Sturm-Liouville e alcune proprietà delle equazioni differenziali. Vengono imposte delle specifiche condizioni al contorno che determinano la realizzazione dei sistemi di Sturm-Liouville, di cui vengono studiati due esempi notevoli: le guide d'onda e la conduzione del calore.
Resumo:
In questa tesi si discute di alcuni modelli di pricing per opzioni di tipo europeo e di opportuni metodi perturbativi che permettono di trovare approssimazioni soddisfacenti dei prezzi e delle volatilità implicite relative a questi modelli.
Resumo:
I tumori macroscopici e microscopici, dopo la loro prima fase di crescita, sono composti da un numero medio elevato di cellule. Così, in assenza di perturbazioni esterne, la loro crescita e i punti di equilibrio possono essere descritti da equazioni differenziali. Tuttavia, il tumore interagisce fortemente col macroambiente che lo circonda e di conseguenza una descrizione del tutto deterministica risulta a volte inappropriata. In questo caso si può considerare l'interazione con fluttuazioni statistiche, causate da disturbi esterni, utilizzando le equazioni differenziali stocastiche (SDE). Questo è vero in modo particolare quando si cerca di modellizzare tumori altamente immunogenici che interagiscono con il sistema immunitario, in quanto la complessità di questa interazione risulta in fenomeni di multistabilità. Così, il rumore può provocare disturbi e indurre transizioni di stato (Noise-Induced-Transitions). E' importante notare che una NIT può avere implicazioni profonde sulla vita di un paziente, dal momento che una transizione da uno stato di equilibrio piccolo, nelle dimensioni del tumore, ad uno stato di equilibrio macroscopico, nella maggior parte dei casi significa il passaggio dalla vita alla morte. Generalmente l'approccio standard è quello di modellizzare le fluttuazioni stocastiche dei parametri per mezzo di rumore gaussiano bianco o colorato. In alcuni casi però questa procedura è altamente inadeguata, a causa della illimitatezza intrinseca dei rumori gaussiani che può portare a gravi incongruenze biologiche: pertanto devono essere utilizzati dei rumori "limitati", che, tuttavia, sono molto meno studiati di quelli gaussiani. Inoltre, l'insorgenza di NIT dipende dal tipo di rumore scelto, che rivela un nuovo livello di complessità in biologia. Lo scopo di questa tesi è quello di studiare le applicazioni di due tipi diversi di "rumori limitati" nelle transizioni indotte in due casi: interazione tra tumore e sistema immunitario e chemioterapia dei tumori. Nel primo caso, abbiamo anche introdotto un nuovo modello matematico di terapia, che estende, in modo nuovo, il noto modello di Norton-Simon.