44 resultados para la machine de Helmholtz bidirectionnelle
Resumo:
In CMS è stato lanciato un progetto di Data Analytics e, all’interno di esso, un’attività specifica pilota che mira a sfruttare tecniche di Machine Learning per predire la popolarità dei dataset di CMS. Si tratta di un’osservabile molto delicata, la cui eventuale predizione premetterebbe a CMS di costruire modelli di data placement più intelligenti, ampie ottimizzazioni nell’uso dello storage a tutti i livelli Tiers, e formerebbe la base per l’introduzione di un solito sistema di data management dinamico e adattivo. Questa tesi descrive il lavoro fatto sfruttando un nuovo prototipo pilota chiamato DCAFPilot, interamente scritto in python, per affrontare questa sfida.
Resumo:
Questo progetto di tesi è lo sviluppo di un sistema distribuito di acquisizione e visualizzazione interattiva di dati. Tale sistema è utilizzato al CERN (Organizzazione Europea per la Ricerca Nucleare) al fine di raccogliere i dati relativi al funzionamento dell'LHC (Large Hadron Collider, infrastruttura ove avvengono la maggior parte degli esperimenti condotti al CERN) e renderli disponibili al pubblico in tempo reale tramite una dashboard web user-friendly. L'infrastruttura sviluppata è basata su di un prototipo progettato ed implementato al CERN nel 2013. Questo prototipo è nato perché, dato che negli ultimi anni il CERN è diventato sempre più popolare presso il grande pubblico, si è sentita la necessità di rendere disponibili in tempo reale, ad un numero sempre maggiore di utenti esterni allo staff tecnico-scientifico, i dati relativi agli esperimenti effettuati e all'andamento dell'LHC. Le problematiche da affrontare per realizzare ciò riguardano sia i produttori dei dati, ovvero i dispositivi dell'LHC, sia i consumatori degli stessi, ovvero i client che vogliono accedere ai dati. Da un lato, i dispositivi di cui vogliamo esporre i dati sono sistemi critici che non devono essere sovraccaricati di richieste, che risiedono in una rete protetta ad accesso limitato ed utilizzano protocolli di comunicazione e formati dati eterogenei. Dall'altro lato, è necessario che l'accesso ai dati da parte degli utenti possa avvenire tramite un'interfaccia web (o dashboard web) ricca, interattiva, ma contemporaneamente semplice e leggera, fruibile anche da dispositivi mobili. Il sistema da noi sviluppato apporta miglioramenti significativi rispetto alle soluzioni precedentemente proposte per affrontare i problemi suddetti. In particolare presenta un'interfaccia utente costituita da diversi widget configurabili, riuitilizzabili che permettono di esportare i dati sia presentati graficamente sia in formato "machine readable". Un'alta novità introdotta è l'architettura dell'infrastruttura da noi sviluppata. Essa, dato che è basata su Hazelcast, è un'infrastruttura distribuita modulare e scalabile orizzontalmente. È infatti possibile inserire o rimuovere agenti per interfacciarsi con i dispositivi dell'LHC e web server per interfacciarsi con gli utenti in modo del tutto trasparente al sistema. Oltre a queste nuove funzionalità e possbilità, il nostro sistema, come si può leggere nella trattazione, fornisce molteplici spunti per interessanti sviluppi futuri.
Resumo:
La presente tesi nasce da un tirocinio avanzato svolto presso l’azienda CTI (Communication Trend Italia) di Milano. Gli obiettivi dello stage erano la verifica della possibilità di inserire gli strumenti automatici nel flusso di lavoro dell’azienda e l'individuazione delle tipologie testuali e delle combinazioni linguistiche a cui essi sono applicabili. Il presente elaborato si propone di partire da un’analisi teorica dei vari aspetti legati all’utilizzo della TA, per poi descriverne l’applicazione pratica nei procedimenti che hanno portato alla creazione dei sistemi custom. Il capitolo 1 offre una panoramica teorica sul mondo della machine translation, che porta a delineare la modalità di utilizzo della TA ad oggi più diffusa: quella in cui la traduzione fornita dal sistema viene modificata tramite post-editing oppure il testo di partenza viene ritoccato attraverso il pre-editing per eliminare gli elementi più ostici. Nel capitolo 2, partendo da una panoramica relativa ai principali software di traduzione automatica in uso, si arriva alla descrizione di Microsoft Translator Hub, lo strumento scelto per lo sviluppo dei sistemi custom di CTI. Nel successivo passaggio, l’attenzione si concentra sull’ottenimento di sistemi customizzati. Un ampio approfondimento è dedicato ai metodi per reperire ed utilizzare le risorse. In seguito viene descritto il percorso che ha portato alla creazione e allo sviluppo dei due sistemi Bilanci IT_EN e Atto Costitutivo IT_EN in Microsoft Translator Hub. Infine, nel quarto ed ultimo capitolo gli output che i due sistemi forniscono vengono rivisti per individuarne le caratteristiche e analizzati tramite alcuni tool di valutazione automatica. Grazie alle informazioni raccolte vengono poi formulate alcune previsioni sul futuro uso dei sistemi presso l’azienda CTI.
Resumo:
The revision hip arthroplasty is a surgical procedure, consisting in the reconstruction of the hip joint through the replacement of the damaged hip prosthesis. Several factors may give raise to the failure of the artificial device: aseptic loosening, infection and dislocation represent the principal causes of failure worldwide. The main effect is the raise of bone defects in the region closest to the prosthesis that weaken the bone structure for the biological fixation of the new artificial hip. For this reason bone reconstruction is necessary before the surgical revision operation. This work is born by the necessity to test the effects of bone reconstruction due to particular bone defects in the acetabulum, after the hip prosthesis revision. In order to perform biomechanical in vitro tests on hip prosthesis implanted in human pelvis or hemipelvis a practical definition of a reference frame for these kind of bone specimens is required. The aim of the current study is to create a repeatable protocol to align hemipelvic samples in the testing machine, that relies on a reference system based on anatomical landmarks on the human pelvis. In chapter 1 a general overview of the human pelvic bone is presented: anatomy, bone structure, loads and the principal devices for hip joint replacement. The purpose of chapters 2 is to identify the most common causes of the revision hip arthroplasty, analysing data from the most reliable orthopaedic registries in the world. Chapter 3 presents an overview of the most used classifications for acetabular bone defects and fractures and the most common techniques for acetabular and bone reconstruction. After a critical review of the scientific literature about reference frames for human pelvis, in chapter 4, the definition of a new reference frame is proposed. Based on this reference frame, the alignment protocol for the human hemipelvis is presented as well as the statistical analysis that confirm the good repeatability of the method.
Resumo:
This work focuses on Machine Translation (MT) and Speech-to-Speech Translation, two emerging technologies that allow users to automatically translate written and spoken texts. The first part of this work provides a theoretical framework for the evaluation of Google Translate and Microsoft Translator, which is at the core of this study. Chapter one focuses on Machine Translation, providing a definition of this technology and glimpses of its history. In this chapter we will also learn how MT works, who uses it, for what purpose, what its pros and cons are, and how machine translation quality can be defined and assessed. Chapter two deals with Speech-to-Speech Translation by focusing on its history, characteristics and operation, potential uses and limits deriving from the intrinsic difficulty of translating spoken language. After describing the future prospects for SST, the final part of this chapter focuses on the quality assessment of Speech-to-Speech Translation applications. The last part of this dissertation describes the evaluation test carried out on Google Translate and Microsoft Translator, two mobile translation apps also providing a Speech-to-Speech Translation service. Chapter three illustrates the objectives, the research questions, the participants, the methodology and the elaboration of the questionnaires used to collect data. The collected data and the results of the evaluation of the automatic speech recognition subsystem and the language translation subsystem are presented in chapter four and finally analysed and compared in chapter five, which provides a general description of the performance of the evaluated apps and possible explanations for each set of results. In the final part of this work suggestions are made for future research and reflections on the usability and usefulness of the evaluated translation apps are provided.
Resumo:
Questo progetto di tesi è parte di un programma più ampio chiamato TIME (Tecnologia Integrata per Mobilità Elettrica) sviluppato tra diversi gruppi di ricerca afferenti al settore meccanico, termofluidodinamico e informatico. TIME si pone l'obiettivo di migliorare la qualità dei componenti di un sistema powertrain presenti oggi sul mercato progettando un sistema general purpose adatto ad essere installato su veicoli di prima fornitura ma soprattutto su retrofit, quindi permettendo il ricondizionamento di veicoli con motore a combustione esistenti ma troppo datati. Lo studio svolto si pone l'obiettivo di identificare tutti gli aspetti di innovazione tecnologica che possono essere installati all'interno del sistema di interazione uomo-macchina. All'interno di questo progetto sarà effettuata una pianificazione di tutto il lavoro del gruppo di ricerca CIRI-ICT, partendo dallo studio normativo ed ergonomico delle interfacce dei veicoli analizzando tutti gli elementi di innovazione che potranno far parte del sistema TIME e quindi programmare tutte le attività previste al fine di raggiungere gli obiettivi prefissati, documentando opportunamente tutto il processo. Nello specifico saranno analizzate e definite le tecniche da utilizzare per poi procedere alla progettazione e implementazione di un primo sistema sperimentale di Machine Learning e Gamification con lo scopo di predire lo stato della batteria in base allo stile di guida dell'utente e incentivare quest'ultimo tramite sistemi di Gamification installati sul cruscotto ad una guida più consapevole dei consumi. Questo sistema sarà testato su dati simulati con l'obiettivo di avere un prodotto configurabile da installare sul veicolo.
Resumo:
Il riconoscimento delle gesture è un tema di ricerca che sta acquisendo sempre più popolarità, specialmente negli ultimi anni, grazie ai progressi tecnologici dei dispositivi embedded e dei sensori. Lo scopo di questa tesi è quello di utilizzare alcune tecniche di machine learning per realizzare un sistema in grado di riconoscere e classificare in tempo reale i gesti delle mani, a partire dai segnali mioelettrici (EMG) prodotti dai muscoli. Inoltre, per consentire il riconoscimento di movimenti spaziali complessi, verranno elaborati anche segnali di tipo inerziale, provenienti da una Inertial Measurement Unit (IMU) provvista di accelerometro, giroscopio e magnetometro. La prima parte della tesi, oltre ad offrire una panoramica sui dispositivi wearable e sui sensori, si occuperà di analizzare alcune tecniche per la classificazione di sequenze temporali, evidenziandone vantaggi e svantaggi. In particolare, verranno considerati approcci basati su Dynamic Time Warping (DTW), Hidden Markov Models (HMM), e reti neurali ricorrenti (RNN) di tipo Long Short-Term Memory (LSTM), che rappresentano una delle ultime evoluzioni nel campo del deep learning. La seconda parte, invece, riguarderà il progetto vero e proprio. Verrà impiegato il dispositivo wearable Myo di Thalmic Labs come caso di studio, e saranno applicate nel dettaglio le tecniche basate su DTW e HMM per progettare e realizzare un framework in grado di eseguire il riconoscimento real-time di gesture. Il capitolo finale mostrerà i risultati ottenuti (fornendo anche un confronto tra le tecniche analizzate), sia per la classificazione di gesture isolate che per il riconoscimento in tempo reale.
Resumo:
Questo lavoro di tesi si inserisce in un progetto di ricerca internazionale denominato “Venice Time Machine” dove collaborano fianco a fianco l’Ecole Polytechnique Fédérale de Lausanne e l’Università Cà Foscari di Venezia. Grazie al coinvolgimento dell’Archivio di Stato di Venezia, decine di chilometri di documenti verranno digitalizzati e indicizzati, al fine di creare un database open access da utilizzare per la ricerca e l’istruzione. Molti di questi documenti tuttavia sono particolarmente fragili oppure, come nel caso di diversi testamenti, non sono mai stati aperti, per cui le tecniche tradizionali di digitalizzazione non sono applicabili. Di qui deriva l’interesse per sperimentare nuove tecniche non invasive al fine di digitalizzare e quindi rendere fruibili al pubblico anche questi documenti altrimenti inaccessibili. Lo scopo dell’analisi tomografica è quello di creare un modello 3D del documento, su cui effettuare successive elaborazioni al fine di ottenere una separazione virtuale delle pagine e quindi permetterne la lettura anche se il manoscritto è chiuso e non può essere aperto. In particolare in questo lavoro di tesi sono stati analizzati due testamenti: un testamento del 1679, usato come campione di prova per verificare la migliore sorgente di raggi X ai fini della ricostruzione tomografica e anche per valutare l’efficacia della tecnica, e il testamento Alchier-Spiera (dai nomi dei testatori), datato 1634, di maggiore interesse poiché ancora chiuso. I risultati ottenuti sono molto soddisfacenti, poiché elaborando le ricostruzioni tomografiche è possibile la lettura virtuale sia di parole che di intere frasi. Questo risultato porta nuova linfa al progetto che, di base, si pone l’obiettivo di convertire in formato digitale decine di km di testi conservati in Archivio, ma che ha trovato, in questo tipo di testamenti chiusi, un ostacolo molto difficile da superare.
Resumo:
In questa tesi si è cercato di trovare le soluzioni più efficaci a supporto delle questioni legate all'ipertensione di seguito descritte attraverso l'uso di tecniche riguardanti l'intelligenza artificiale e l'Internet of Things. Uno tra i compiti dei medici che si occupano di curare i malati di ipertensione è quello di elaborare protocolli per quanto riguarda la prevenzione e la cura di questa malattia, i quali vengono periodicamente aggiornati. Per supportare ciò, il primo progetto sviluppato è consistito in un'analisi dei dati sul dataset ottenuto a partire dall'elaborazione delle risposte date ai questionari che sono stati distribuiti durante la Giornata Mondiale dell'Ipertensione. A partire da questo, si è cercato di evidenziare la classe di persone che con più probabilità sono malate di ipertensione in modo tale che le linee guida aggiornate si concentrino maggiormente su costoro. La seconda questione affrontata è che non sempre le cure che vengono prescritte sono efficaci, talvolta a causa del medico, talvolta a causa del paziente. Si rende perciò necessario fornire ai pazienti degli strumenti che li aiutino direttamente nella cura della loro malattia. Devono avere anche lo scopo di aiutare il medico nel suo lavoro di monitoraggio periodico delle condizioni di salute del paziente, perché possa avere realmente il polso della situazione. Per fare questo, il secondo progetto ha riguardato lo sviluppo di un chatbot disponibile sulla piattaforma di messaggistica istantanea Telegram ad uso dei malati di ipertensione. Questo assistente virtuale permette loro di registrare le misurazioni di pressione che settimanalmente devono effettuare e ricorda loro di farlo quando passa troppo tempo dall'ultima misurazione. Il sistema permette inoltre di visualizzare medie e grafici delle misurazioni che sono state raccolte cosicché il medico può affidarsi ad uno strumento più evoluto del semplice libretto diario in cui il paziente annota tutte le misurazioni.
Resumo:
Il riconoscimento delle condizioni del manto stradale partendo esclusivamente dai dati raccolti dallo smartphone di un ciclista a bordo del suo mezzo è un ambito di ricerca finora poco esplorato. Per lo sviluppo di questa tesi è stata sviluppata un'apposita applicazione, che combinata a script Python permette di riconoscere differenti tipologie di asfalto. L’applicazione raccoglie i dati rilevati dai sensori di movimento integrati nello smartphone, che registra i movimenti mentre il ciclista è alla guida del suo mezzo. Lo smartphone è fissato in un apposito holder fissato sul manubrio della bicicletta e registra i dati provenienti da giroscopio, accelerometro e magnetometro. I dati sono memorizzati su file CSV, che sono elaborati fino ad ottenere un unico DataSet contenente tutti i dati raccolti con le features estratte mediante appositi script Python. A ogni record sarà assegnato un cluster deciso in base ai risultati prodotti da K-means, risultati utilizzati in seguito per allenare algoritmi Supervised. Lo scopo degli algoritmi è riconoscere la tipologia di manto stradale partendo da questi dati. Per l’allenamento, il DataSet è stato diviso in due parti: il training set dal quale gli algoritmi imparano a classificare i dati e il test set sul quale gli algoritmi applicano ciò che hanno imparato per dare in output la classificazione che ritengono idonea. Confrontando le previsioni degli algoritmi con quello che i dati effettivamente rappresentano si ottiene la misura dell’accuratezza dell’algoritmo.
Resumo:
Il volume di tesi ha riguardato lo sviluppo di un'applicazione mobile che sfrutta la Realtà Aumentata e il Machine Learning nel contesto della biodiversità. Nello specifico si è realizzato un modello di AI che permetta la classificazione di immagini di fiori. Tale modello è stato poi integrato in Android, al fine della realizzazione di un'app che riesca a riconoscere specifiche specie di fiori, oltre a individuare gli insetti impollinatori attratti da essi e rappresentarli in Realtà Aumentata.
Resumo:
Il quark-gluon plasma (QGP) è uno stato della materia previsto dalla cromodinamica quantistica. L’esperimento ALICE a LHC ha tra i suoi obbiettivi principali lo studio della materia fortemente interagente e le proprietà del QGP attraverso collisioni di ioni pesanti ultra-relativistici. Per un’esaustiva comprensione di tali proprietà, le stesse misure effettuate su sistemi collidenti più piccoli (collisioni protone-protone e protone-ione) sono necessarie come riferimento. Le recenti analisi dei dati raccolti ad ALICE hanno mostrato che la nostra comprensione dei meccanismi di adronizzazione di quark pesanti non è completa, perchè i dati ottenuti in collisioni pp e p-Pb non sono riproducibili utilizzando modelli basati sui risultati ottenuti con collisioni e+e− ed ep. Per questo motivo, nuovi modelli teorici e fenomenologici, in grado di riprodurre le misure sperimentali, sono stati proposti. Gli errori associati a queste nuove misure sperimentali al momento non permettono di verificare in maniera chiara la veridicità dei diversi modelli proposti. Nei prossimi anni sarà quindi fondamentale aumentare la precisione di tali misure sperimentali; d’altra parte, stimare il numero delle diverse specie di particelle prodotte in una collisione può essere estremamente complicato. In questa tesi, il numero di barioni Lc prodotti in un campione di dati è stato ottenuto utilizzando delle tecniche di machine learning, in grado di apprendere pattern e imparare a distinguere candidate di segnale da quelle di fondo. Si sono inoltre confrontate tre diverse implementazioni di un algoritmo di Boosted Decision Trees (BDT) e si è utilizzata quella più performante per ricostruire il barione Lc in collisioni pp raccolte dall’esperimento ALICE.
Resumo:
Nonostante lo scetticismo di molti studiosi circa la possibilità di prevedere l'andamento della borsa valori, esistono svariate teorie ipotizzanti la possibilità di utilizzare le informazioni conosciute per predirne i movimenti futuri. L’avvento dell’intelligenza artificiale nella seconda parte dello scorso secolo ha permesso di ottenere risultati rivoluzionari in svariati ambiti, tanto che oggi tale disciplina trova ampio impiego nella nostra vita quotidiana in molteplici forme. In particolare, grazie al machine learning, è stato possibile sviluppare sistemi intelligenti che apprendono grazie ai dati, riuscendo a modellare problemi complessi. Visto il successo di questi sistemi, essi sono stati applicati anche all’arduo compito di predire la borsa valori, dapprima utilizzando i dati storici finanziari della borsa come fonte di conoscenza, e poi, con la messa a punto di tecniche di elaborazione del linguaggio naturale umano (NLP), anche utilizzando dati in linguaggio naturale, come il testo di notizie finanziarie o l’opinione degli investitori. Questo elaborato ha l’obiettivo di fornire una panoramica sull’utilizzo delle tecniche di machine learning nel campo della predizione del mercato azionario, partendo dalle tecniche più elementari per arrivare ai complessi modelli neurali che oggi rappresentano lo stato dell’arte. Vengono inoltre formalizzati il funzionamento e le tecniche che si utilizzano per addestrare e valutare i modelli di machine learning, per poi effettuare un esperimento in cui a partire da dati finanziari e soprattutto testuali si tenterà di predire correttamente la variazione del valore dell’indice di borsa S&P 500 utilizzando un language model basato su una rete neurale.
Resumo:
Questo lavoro di tesi ha visto come obiettivo finale quello di realizzare una se- rie di attacchi, alcuni di questi totalmente originali, ai protocolli della famiglia Time-Sensitive Networking (TSN) attraverso lo sviluppo di un’infrastruttura virtualizzata. L’infrastruttura è stata costruita e progettata utilizzando mac- chine virtuali con Quick EMUlator (QEMU) come strato di virtualizzazione ed accelerate attraverso Kernel-based Virtual Machine (KVM). Il progetto è stato concepito come Infrastrucutre as Code (IaC), attraverso l’ausilio di Ansible e alcuni script shell utilizzati come collante per le varie parti del progetto.
Resumo:
Nonostante l'utilizzo di strumenti informatici nella pratica didattica della matematica sia ormai ampiamente diffuso, l'insegnamento dei principi matematici dell'informatica è preso meno in considerazione anche a causa dei pochi punti di contatto nelle "Indicazioni Nazionali" tra le due materie, matematica e informatica, che sono invece intimamente correlate. Questa tesi descrive una attività didattica incentrata sul concetto di calcolabilità e computabilità e basata sul noto formalismo delle Macchine di Turing. É nostra opinione che coinvolgere gli studenti in tali tipologie di attività possa stimolare oltre all'apprendimento di competenze disciplinari, anche lo sviluppo di importanti competenze trasversali, in primis, il problem solving. L’attività proposta nella tesi è stata realizzata in una classe terza di un istituto tecnico economico dove, a seguito di una spiegazione dell’argomento, sono stati svolti due esercizi di gruppo, utilizzando il software \emph{Turing Machine Visualization}, che permette agli studenti e al docente di avere un supporto visuale al dialogo. Al termine dell’attività didattica è stato somministrato agli studenti un questionario che ha permesso di valutare le competenze acquisite da due prospettive distinte: soggettiva e oggettiva. I risultati del questionario sono ampliamente analizzati e discussi nella tesi.