75 resultados para algoritmo markerless etichettatura visione
Resumo:
Oggi, grazie al continuo progredire della tecnologia, in tutti i sistemi di produzione industriali si trova almeno un macchinario che permette di automatizzare determinate operazioni. Alcuni di questi macchinari hanno un sistema di visione industriale (machine vision), che permette loro di osservare ed analizzare ciò che li circonda, dotato di algoritmi in grado di operare alcune scelte in maniera automatica. D’altra parte, il continuo progresso tecnologico che caratterizza la realizzazione di sensori di visione, ottiche e, nell’insieme, di telecamere, consente una sempre più precisa e accurata acquisizione della scena inquadrata. Oggi, esigenze di mercato fanno si che sia diventato necessario che macchinari dotati dei moderni sistemi di visione permettano di fare misure morfometriche e dimensionali non a contatto. Ma le difficoltà annesse alla progettazione ed alla realizzazione su larga scala di sistemi di visione industriali che facciano misure dimensioni non a contatto, con sensori 2D, fanno sì che in tutto il mondo il numero di aziende che producono questo tipo di macchinari sia estremamente esiguo. A fronte di capacità di calcolo avanzate, questi macchinari necessitano dell’intervento di un operatore per selezionare quali parti dell’immagine acquisita siano d’interesse e, spesso, anche di indicare cosa misurare in esse. Questa tesi è stata sviluppata in sinergia con una di queste aziende, che produce alcuni macchinari per le misure automatiche di pezzi meccanici. Attualmente, nell’immagine del pezzo meccanico vengono manualmente indicate le forme su cui effettuare misure. Lo scopo di questo lavoro è quello di studiare e prototipare un algoritmo che fosse in grado di rilevare e interpretare forme geometriche note, analizzando l’immagine acquisita dalla scansione di un pezzo meccanico. Le difficoltà affrontate sono tipiche dei problemi del “mondo reale” e riguardano tutti i passaggi tipici dell’elaborazione di immagini, dalla “pulitura” dell’immagine acquisita, alla sua binarizzazione fino, ovviamente, alla parte di analisi del contorno ed identificazione di forme caratteristiche. Per raggiungere l’obiettivo, sono state utilizzate tecniche di elaborazione d’immagine che hanno permesso di interpretare nell'immagine scansionata dalla macchina tutte le forme note che ci siamo preposti di interpretare. L’algoritmo si è dimostrato molto robusto nell'interpretazione dei diametri e degli spallamenti trovando, infatti, in tutti i benchmark utilizzati tutte le forme di questo tipo, mentre è meno robusto nella determinazione di lati obliqui e archi di circonferenza a causa del loro campionamento non lineare.
Resumo:
Il lavoro di tesi svolto riguarda la progettazione e lo sviluppo di un algoritmo per la pianificazione ottimizzata della distribuzione con viaggi sincronizzati; il metodo sviluppato è un algoritmo mateuristico. I metodi mateuristici nascono dall’integrazione di algoritmi esatti, utilizzati all’interno di un framework metaeuristico, scelto come paradigma di soluzione del problema. La combinazione di componenti esatte e algoritmi metaeuristici ha lo scopo di sfruttare i vantaggi di entrambi gli approcci: grazie all'uso di componenti esatte, è possibile operare in modo efficace e di concentrarsi su alcuni dei vincoli del problema, mentre, con l'utilizzo di un framework metaeuristico, si può efficacemente esplorare grandi aree dello spazio di ricerca in tempi accettabili. Il problema analizzato nel lavoro di tesi è un problema di trasporto, ovvero il Vehicle Routing Problem con finestre temporali e vincoli di sincronizzazione a coppie (VRPTWPS). Il problema richiede di individuare un piano di organizzazione ottimizzato per i viaggi di consegna merci presso un insieme di clienti; ogni cliente richiede che la consegna avvenga all’interno di orari predefiniti; un sottoinsieme di essi richiede, inoltre, che la consegna venga effettuata con la presenza di esattamente due addetti. La presenza di quest’ultimo vincolo richiede, dunque, che due incaricati, indipendentemente dai viaggi di visita che questi effettuano, si incontrino presso uno stesso cliente nello stesso istante. Il vincolo di sincronizzazione rende il problema difficile da risolvere in maniera ottimizzata con i tradizionali metodi di ricerca locale; da ciò nasce l’uso dei metodi mateuristici per la risoluzione ottimizzata del problema. Grazie all’utilizzo di algoritmi esatti, i metodi mateuristici riescono a trattare in maniera più efficace alcuni vincoli dei problemi da risolvere.
Resumo:
Approfondimento di tecniche di controllo ottimo per problemi di regolazione e di inseguimento di modello. Sintesi e implementazione di un algoritmo che si occupi del controllo della dinamica laterale di una vettura attraverso il sistema di aerodinamica mobile.
Resumo:
Il task del data mining si pone come obiettivo l'estrazione automatica di schemi significativi da grandi quantità di dati. Un esempio di schemi che possono essere cercati sono raggruppamenti significativi dei dati, si parla in questo caso di clustering. Gli algoritmi di clustering tradizionali mostrano grossi limiti in caso di dataset ad alta dimensionalità, composti cioè da oggetti descritti da un numero consistente di attributi. Di fronte a queste tipologie di dataset è necessario quindi adottare una diversa metodologia di analisi: il subspace clustering. Il subspace clustering consiste nella visita del reticolo di tutti i possibili sottospazi alla ricerca di gruppi signicativi (cluster). Una ricerca di questo tipo è un'operazione particolarmente costosa dal punto di vista computazionale. Diverse ottimizzazioni sono state proposte al fine di rendere gli algoritmi di subspace clustering più efficienti. In questo lavoro di tesi si è affrontato il problema da un punto di vista diverso: l'utilizzo della parallelizzazione al fine di ridurre il costo computazionale di un algoritmo di subspace clustering.
Resumo:
Studio, progettazione e realizzazione di un regolatore di carica per batterie al piombo gel, con algoritmo mppt, per applicazioni fotovoltaiche in isola
Resumo:
Implementazione mediante librerie MPI di un algoritmo genetico parallelo per risolvere il problema sulla k-colorabilità. La tesi descrive la versione sequenziale dell'algoritmo genetico di riferimento e l'implementazione della sua versione parallela. Vi è una fase di analisi dei risultati ottenuti dai test effettuati su una macchina ad architettura parallela.
Resumo:
Il lavoro di tesi è stato svolto presso Datalogic ADC, azienda attiva nel campo dell'automazione industriale. La divisione presso cui mi sono recato per 6 mesi ha sede a Pasadena (California, USA) e si occupa principalmente di sistemi di visione e riconoscimento oggetti, con particolare applicazione al settore della grande distribuzione. L'azienda ha in catalogo diversi prodotti finalizzati ad automatizzare e velocizzare il processo di pagamento alle casse da parte dei clienti. In questo contesto, al mio arrivo, era necessario sviluppare un software che permettesse di riconoscere i comuni carrelli per la spesa quando sono inquadrati dall'alto, con posizione verticale della camera. Mi sono quindi occupato di sviluppare ed implementare un algoritmo che permetta di riconoscere i carrelli della spesa sotto ben precise ipotesi e dati iniziali. Come sarà spiegato più dettagliatamente in seguito, è necessario sia individuare la posizione del carrello sia il suo orientamento, al fine di ottenere in quale direzione si stia muovendo. Inoltre, per i diversi impieghi che si sono pensati per il software in oggetto, è necessario che l'algoritmo funzioni sia con carrelli vuoti, sia con carrelli pieni, anche parzialmente. In aggiunta a ciò il programma deve essere in grado di gestire immagini in cui siano presenti più di un carrello, identificando correttamente ciascuno di essi. Nel Capitolo 1 è data una più specifica introduzione al problema e all'approccio utilizzato per risolverlo. Il Capitolo 2 illustra nel dettaglio l'algoritmo utilizzato. Il Capitolo 3 mostra i risultati sperimentali ottenuti e il procedimento seguito per l'analisi degli stessi. Infine il Capitolo 4 espone alcuni accorgimenti che sono stati apportati all'algoritmo iniziale per cercare di velocizzarlo in vista di un possibile impiego, distinguendo i cambiamenti che introducono un leggero degrado delle prestazioni da quelli che non lo implicano. Il Capitolo 5 conclude sinteticamente questa trattazione ricordando i risultati ottenuti.
Resumo:
La sonnolenza durante la guida è un problema di notevole entità e rappresenta la causa di numerosi incidenti stradali. Rilevare i segnali che precedono la sonnolenza è molto importante in quanto, é possibile mettere in guardia i conducenti dei mezzi adottando misure correttive e prevenendo gli incidenti. Attualmente non esiste una metodica efficace in grado di misurare la sonnolenza in maniera affidabile, e che risulti di facile applicazione. La si potrebbe riconoscere da mutazioni di tipo comportamentale del soggetto come: presenza di sbadigli, chiusura degli occhi o movimenti di caduta della testa. I soggetti in stato di sonnolenza presentano dei deficit nelle loro capacità cognitive e psicomotorie. Lo stesso vale per i conducenti i quali, quando sono mentalmente affaticati non sono in grado di mantenere un elevato livello di attenzione. I tempi di reazione si allungano e la capacità decisionale si riduce. Ciò è associato a cambiamenti delle attività delta, theta e alfa di un tracciato EEG. Tramite lo studio dei segnali EEG è possibile ricavare informazioni utili sullo stato di veglia e sull'insorgenza del sonno. Come strumento di classificazione per elaborare e interpretare tali segnali, in questo studio di tesi sono state utilizzate le support vector machines(SVM). Le SVM rappresentano un insieme di metodi di apprendimento che permettono la classicazione di determinati pattern. Necessitano di un set di dati di training per creare un modello che viene testato su un diverso insieme di dati per valutarne le prestazioni. L'obiettivo è quello di classicare in modo corretto i dati di input. Una caratteristica delle SVM è una buona capacità di generalizzare indipendentemente dalla dimensione dello spazio di input. Questo le rende particolarmente adatte per l'analisi di dati biomedici come le registrazioni EEG multicanale caratterizzate da una certa ridondanza intrinseca dei dati. Nonostante sia abbastanza semplice distinguere lo stato di veglia dallo stato di sonno, i criteri per valutarne la transizione non sono ancora stati standardizzati. Sicuramente l'attività elettro-oculografica (EOG) riesce a dare informazioni utili riguardo l'insorgenza del sonno, in quanto essa è caratterizzata dalla presenza di movimenti oculari lenti rotatori (Slow Eye Movements, SEM) tipici della transizione dalla veglia alla sonno. L'attività SEM inizia prima dello stadio 1 del sonno, continua lungo tutta la durata dello stesso stadio 1, declinando progressivamente nei primi minuti dello stadio 2 del sonno fino a completa cessazione. In questo studio, per analizzare l'insorgere della sonnolenza nei conducenti di mezzi, sono state utilizzate registrazioni provenienti da un solo canale EEG e da due canali EOG. Utilizzare un solo canale EEG impedisce una definizione affidabile dell'ipnogramma da parte dei clinici. Quindi l'obiettivo che ci si propone, in primo luogo, è quello di realizzare un classificatore del sonno abbastanza affidabile, a partire da un solo canale EEG, al fine di verificare come si dispongono i SEM a cavallo dell'addormentamento. Quello che ci si aspetta è che effettivamente l'insorgere della sonnolenza sia caratterizzata da una massiccia presenza di SEM.
Resumo:
Descrizione dell'algoritmo crittografico AES, criteri adottati dal NIST per la scelta di AES e considerazioni sulla sua sicurezza.