131 resultados para Teorema-H deBoltzmann
Resumo:
Il lavoro concerne il gruppo delle trecce, il suo legame con i link e si concentra sui teoremi di Markov e Alexander.
Resumo:
Questa tesi si prefigge lo scopo di dimostrare il teorema di Igusa. Inizia introducendo algebricamente i numeri p-adici e ne dà una rappresentazione grafica. Sviluppa poi un integrale definito dalla misura di Haar, invariante per traslazione e computa alcuni esempi. Utilizza il blow up come strumento per la risoluzione di alcuni integrali ed enuncia un'applicazione del teorema di Hironaka sulla risolubilità delle singolarità. Infine usa questi risultati per dimostrare il teorema di Igusa.
Resumo:
La seguente tesi affronta la dimostrazione del teorema dei quattro colori. Dopo un introduzione dei concetti cardine utili alla dimostrazione, quali i concetti ed i risultati principali della teoria dei grafi e della loro colorazione, viene affrontata a livello prima storico e poi tecnico l'evoluzione della dimostrazione del teorema, che rimase congettura per 124 anni.
Resumo:
Il teorema della mappa di Riemann è un risultato fondamentale dell'analisi complessa che afferma l'esistenza di un biolomorfismo tra un qualsiasi dominio semplicemente connesso incluso strettamente nel piano ed il disco unità. Si tratta di un teorema di grande importanza e generalità, dato che non si fa alcuna ipotesi sul bordo del dominio considerato. Inoltre ha applicazioni in diverse aree della matematica, ad esempio nella topologia: può infatti essere usato per dimostrare che due domini semplicemente connessi del piano sono tra loro omeomorfi. Presentiamo in questa tesi due diverse dimostrazioni del teorema.
Resumo:
La tesi tratta dei teoremi ergodici più importanti scoperti dalla fine dell'800 ad oggi.
Resumo:
teorema di estensione di Carathéodory
Resumo:
Superfici di Riemann compatte, divisori, Teorema di Riemann Roch, immersioni nello spazio proiettivo.
Resumo:
Studio del teorema del viriale e relative applicazioni astrofisiche. In particolare si è studiato un sistema non collisionale formato da un numero grande di particelle. Nelle applicazioni astrofisiche si è considerato come sistema una galassia ellittica.
Resumo:
Il punto centrale della tesi è stato dimostrare il Teorema di Koebe per le funzioni armoniche. È stato necessario partire da alcuni risultati di integrazione in Rn per ricavare identità e formule di rappresentazione per funzioni di classe C2, introdurre le funzioni armoniche e farne quindi una analisi accurata. Tali funzioni sono state caratterizzate tramite le formule di media e messe in relazione con le funzioni olomorfe, per le quali vale una formula simile di rappresentazione.
Resumo:
Nel lavoro si dimostrano il Teorema della Divergenza e il Teorema di Stokes e le sue generalizzazioni a una curva chiusa di ordine k e a una varietà M, n-dimensionale, orientata con bordo. Successivamente si espongono due applicazioni alla fisica: l'elettromagnetismo e la formula del rotore. Nel primo caso si mostra come applicando il Teorema alle leggi di Biot-Savarat e di Faraday si ottengono le equazioni di Maxwell; nel secondo invece si osserva come il rotore rappresenti la densità superficiale di circuitazione.